Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene/polyethylene oxide block-copolymer

Fig. 8 (a) Structure-based and (b) source-based Sgroup representation of a polystyrene/ polyethylene oxide block-copolymer... [Pg.119]

Extensive neutron reflectivity studies on surfactant adsorption at the air-water interface show that a surfactant monolayer is formed at the interface. Even for concentration cmc, where complex sub-surface ordering of micelles may exist,the interfacial layer remains a monolayer. This is in marked contrast to the situation for amphiphilic block copolymers, where recent measurements by Richards et al. on polystyrene polyethylene oxide block copolymers (PS-b-PEO) and by Thomas et al. on poly(2-(dimethyl-amino)ethylmethacrylamide-b-methyl methacrylate) (DMAEMA-b-MMA) show the formation of surface micelles at a concentration block copolymer, where an abrupt change in thickness is observed at a finite concentration, and signals the onset of surface micellisation. [Pg.282]

For polymer chemists it is interesting to know how well-known linear polymers can be linked with dendritic architectures and what the supramolecular consequences of this approach might be. Combination of dendrimers with linear polymers in hybrid linear-dendritic block copolymers has been employed to achieve particular self-assembly effects. Block copolymers with a linear polyethylene oxide block and dendritic polybenzylether block form large micellar structures in solution that depend on the size (i.e., the generation) of the dendritic block [10]. Amphiphilic block copolymers have been prepared by the combination of a linear, apolar polystyrene chain with a polar, hydrophilic poly(propylene imine) dendrimer [11] as well as PEO with Boc-substituted poly-a, -L-lysine dendrimers, respectively [12]. Such block copolymers form large spherical and cylindrical micelles in solution and have been described as superamphi-philes and hydra-amphiphiles , respectively. [Pg.306]

Self-assembled block copolymers are basically amphilic molecules which contain distinctively different polymers. This block copolymer contains two or more polymers quantitatively in the form of blocks. Some of the block copolymers are polyacrylic acid, polymethylacrylate, polystyrene polyethylene oxide, polybutadiene, polybutylene oxide, poly-2-methyloxazoline, polydimethyl sUoxane, poly-e-caprolactone, polypropylene sulfide, poly-A -isopropylacrylamide, poly-2-vinylpyridine, poly-2-diethylamino ethyl methacrylate, poly-2-(diisopropylamino) ethyl methacrylate, poly-2-(methacryloyloxy) ethyl phosphorylcholine, and polylactic acid. These copolymers contain more than polymers to form certain configurations like linear, branched, patterned. For example, if we take three polymers named A, B, and C, they can be combined to form arrangements AB, BA, AA, BAB, ABCAB, ABCABC, ABABAB, etc. in the form of branched configuration it forms (ABQa, (ABA)a, (AB)4, etc. Depending on the above-mentioned number of blocks, they are named as AB diblock copolymers, ABC triblock copolymers, ABC star block copolymers, etc. The covalent linkage between these different blocks of polymers makes macroscopic phase separation impossible, that is, in its place the phase separation... [Pg.40]

Several other di- and triblock copolymers have been synthesized, although these are of limited commercial availability. Typical examples are diblocks of polystyrene-block-polyvinyl alcohol, triblocks of poly(methyl methacrylate)-block poly(ethylene oxide)-block poly(methyl methacrylate), diblocks of polystyrene block-polyethylene oxide, and triblocks of polyethylene oxide-block polystyrene-polyethylene oxide [4]. [Pg.347]

Electrical conductivity measurements have been reported on a wide range of polymers including carbon nanofibre reinforced HOPE [52], carbon black filled LDPE-ethylene methyl acrylate composites [28], carbon black filled HDPE [53], carbon black reinforced PP [27], talc filled PP [54], copper particle modified epoxy resins [55], epoxy and epoxy-haematite nanorod composites [56], polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) blends [57], polyacrylonitrile based carbon fibre/PC composites [58], PC/MnCli composite films [59], titanocene polyester derivatives of terephthalic acid [60], lithium trifluoromethane sulfonamide doped PS-block-polyethylene oxide (PEO) copolymers [61], boron containing PVA derived ceramic organic semiconductors [62], sodium lanthanum tetrafluoride complexed with PEO [63], PC, acrylonitrile butadiene [64], blends of polyethylene dioxythiophene/ polystyrene sulfonate, PVC and PEO [65], EVA copolymer/carbon fibre conductive composites [66], carbon nanofibre modified thermotropic liquid crystalline polymers [67], PPY [68], PPY/PP/montmorillonite composites [69], carbon fibre reinforced PDMS-PPY composites [29], PANI [70], epoxy resin/PANI dodecylbenzene sulfonic acid blends [71], PANI/PA 6,6 composites [72], carbon fibre EVA composites [66], HDPE carbon fibre nanocomposites [52] and PPS [73]. [Pg.110]

The partial molar quantities of mixing were determined for normal and branched alkanes (O5 — Cio), cyclohexane, benzene and tetrachloromethane in polyisobutylene [57]. Partial molar enthalpies of mixing were measured for normal alkenes in low and high density polyethylene, polypropylene, polybutene-1, polystyrene, poly(methyl acrylate), poly(vinyl chloride), polyCN-isopropyl-acrylamide), ethylene-vinyl acetate copolymer, ethylene-carbon oxide copolymer [88] normal, branched and cyclic alkanes, benzene, n-butylbenzene, ois- and ra s-decalin, tetraline and naphthalene in polystyrene at 183, 193 and 203°C [60] these solutes in poly (methyl acrylate) [57] n-nonane, n-dodecane and benzene in polystyrene in the range 104.8 — 165.1 C [71] O7—C, C12 normal alkanes and aromatic hydrocarbons in polystyrene at an average temperature of 204.9°C [72], C7—Cg normal alkanes in poly(ethylene oxide) at an average temperature of 66.5 "C [72] normal alkanes in ethylene oxide—propylene oxide block copolymers (Pluronics L 72, L 64 and F 68) at the same average temperature [72]. [Pg.147]

Problem 12.7 A combination of core rst and coupling onto approaches often offers a simple strategy to synthesize star block copolymers. Suggest, accordingly, a synthetic strategy for the preparation of 3-arm star block copolymers consisting of diblock polymeric arms, polystyrene- polyethylene oxide (PSt-fc-PEO). [Pg.687]

Au NPs have been synthesized in polymeric micelles composed of amphiphilic block copolymers. Poly(styrene)-block-poly(2-vinylpyridine) in toluene has been used as nanocompartments loaded with a defined amount of HAuCl4 and reduced with anhydrous hydrazine. The metal ions can be reduced in such a way that exactly one Au NP is formed in each micelle, where each particle is of equal size between 1 and 15 nm [113]. In another example, the addition of HAuCfi to the triblock copolymer (PS-b-P2VP-b-PEO) (polystyrene-block-poly-2-vinyl pyridine-block-polyethylene oxide) permits the synthesis of Au N Ps using two different routes, such as the reduction of AuC14 by electron irradiation during observation or by addition of an excess of aqueous NaBH4 solution [114]. [Pg.155]

Adsorption of block copolymers onto a surface is another pathway for surface functionalization. Block copolymers in solution of selective solvent afford the possibility to both self-assemble and adsorb onto a surface. The adsorption behavior is governed mostly by the interaction between the polymers and the solvent, but also by the size and the conformation of the polymer chains and by the interfacial contact energy of the polymer chains with the substrate [115-119], Indeed, in a selective solvent, one of the blocks is in a good solvent it swells and does not adsorb to the surface while the other block, which is in a poor solvent, will adsorb strongly to the surface to minimize its contact with the solvent. There have been a considerable number of studies dedicated to the adsorption of block copolymers to flat or curved surfaces, including adsorption of poly(/cr/-butylstyrcnc)-ft/od -sodium poly(styrenesulfonate) onto silica surfaces [120], polystyrene-Woc -poly(acrylic acid) onto weak polyelectrolyte multilayer surfaces [121], polyethylene-Wocfc-poly(ethylene oxide) on alkanethiol-patterned gold surfaces [122], or poly(ethylene oxide)-Woc -poly(lactide) onto colloidal polystyrene particles [123],... [Pg.16]

We shall examine the range of stability of the ordered structures of copolymers containing an amorphous polystyrene, polybutadiene or poly(ethyl methacrylate) block and acrystallizable polyethylene oxide) (PEO) or poly(e-caprolactone) (PCL) crystallizable block and the factors that determine the existence and the geometrical parameters of such periodic structures. [Pg.138]

A series of well-defined A-B block copolymers of polystyrene-block-polyethylene oxide (PS-PEO) were synthesised [6] and used for the emulsion polymerisation of styrene. These molecules are ideal as the polystyrene (PS) block is compatible with the PS formed, and thus it forms the best anchor chain. The PEO chain (the stabilising chain) is strongly hydrated with water molecules and extends into the aqueous phase where it forms the steric layer necessary for stabilisation. [Pg.349]

The type of emulsion stabilized by polymeric surfactants, charged or uncharged, was not investigated in detail, although it has long been understood that it was dependent of the structure of the surfactant macromolecules. In a series of papers, Riess and his coworkers [143-145] have investigated the effect of the composition and architecture of PS-PEO-based block copolymers (PS polystyrene PEO polyethylene oxide) on stability and emul-... [Pg.373]


See other pages where Polystyrene/polyethylene oxide block-copolymer is mentioned: [Pg.216]    [Pg.222]    [Pg.216]    [Pg.222]    [Pg.30]    [Pg.330]    [Pg.194]    [Pg.151]    [Pg.185]    [Pg.146]    [Pg.116]    [Pg.294]    [Pg.155]    [Pg.230]    [Pg.148]    [Pg.19]    [Pg.22]    [Pg.664]    [Pg.230]    [Pg.194]    [Pg.97]    [Pg.119]    [Pg.148]    [Pg.19]    [Pg.161]    [Pg.9]    [Pg.506]    [Pg.125]    [Pg.23]    [Pg.186]    [Pg.45]    [Pg.365]    [Pg.88]    [Pg.185]    [Pg.365]    [Pg.231]    [Pg.127]   
See also in sourсe #XX -- [ Pg.118 ]




SEARCH



Block polystyrene

Copolymers oxide)

Polyethylene block

Polyethylene block copolymers

Polyethylene copolymers

Polyethylene oxide

Polyethylene oxide) , block copolymer

Polystyrene -polyethylene copolymers

Polystyrene block copolymers

Polystyrene copolymers

Polystyrene-polyethylene

Polystyrene-polyethylene oxid

Polystyrene/polyethylene oxide

© 2024 chempedia.info