Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polypeptides shifts

Although the natural abundance of nitrogen-15 [14390-96-6] leads to lower sensitivity than for carbon-13, this nucleus has attracted considerable interest in the area of polypeptide and protein stmcture deterrnination. Uniform enrichment of is achieved by growing protein synthesi2ing cells in media where is the only nitrogen source. reverse shift correlation via double quantum coherence permits the... [Pg.405]

A SEC material should be hydrophilic if it is to be used for biological applications. One such material, introduced by PolyLC in 1990 (8), is silica with a covalently attached coating of poly(2-hydroxyethyl aspartamide) the trade name is PolyHYDROXYETHYL Aspartamide (PolyHEA). This material was evaluated for SEC of polypeptides by P.C. Andrews (University of Michigan) and worked well for the purpose (Fig. 8.1). Because formic acid is a good solvent for polypeptides, Dr. Andrews tried a mobile phase of 50 mM formic acid. The result was a dramatic shift to a lower fractionation range for both Vq and V, (Fig. 8.2) to the point that V, was defined by the elution position of water. [Pg.250]

The polypeptide toxins from the scorpions Centruroides suffusus and Tityus ser-rulatus. These toxins act by shifting the voltage dependence of the activation of Na channels, thereby inducing a Na channel activity at negative potentials at which Na channels are normally closed 63,64). Site 4 toxins, because of their high affinity for the Na channel, have been efficient tools to elucidate the molecular structure of the Na channel 30,65,66). [Pg.194]

Atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) are members of a family of so-called natriuretic peptides, synthesized predominantly in the cardiac atrium, ventricle, and vascular endothelial cells, respectively (G13, Y2). ANP is a 28-amino-acid polypeptide hormone released into the circulation in response to atrial stretch (L3). ANP acts (Fig. 8) on the kidney to increase sodium excretion and glomerular filtration rate (GFR), to antagonize renal vasoconstriction, and to inhibit renin secretion (Ml). In the cardiovascular system, ANP antagonizes vasoconstriction and shifts fluid from the intravascular to the interstitial compartment (G14). In the adrenal cortex, ANP is a powerful inhibitor of aldosterone synthesis (E6, N3). At the hypothalamic level, ANP inhibits vasopressin secretion (S3). It has been shown that some of the effects of ANP are mediated via a newly discovered hormone, called adreno-medullin, controlling fluid and electrolyte homeostasis (S8). The diuretic and blood pressure-lowering effect of ANP may be partially due to adrenomedullin (V5). [Pg.99]

The influence of adsorption on the structure of a -chymotrypsin is shown in Fig. 10, where the circular dichroism (CD) spectrum of the protein in solution is compared with that of the protein adsorbed on Teflon and silica. Because of absorbance in the far UV by the aromatic styrene, it is impossible to obtain reliable CD spectra of proteins adsorbed on PS and PS- (EO)8. The CD spectrum of a protein reflects its composition of secondary structural elements (a -helices, / -sheets). The spectrum of dissolved a-chymotrypsin is indicative of a low content of or-helices and a high content of //-sheets. After adsorption at the silica surface, the CD spectrum is shifted, but the shift is much more pronounced when the protein was adsorbed at the Teflon surface. The shifts are in opposite directions for the hydrophobic and hydrophilic surfaces, respectively. The spectrum of the protein on the hydrophilic surface of silica indicates a decrease in ordered secondary structure, i.e., the polypeptide chain in the protein has an increased random structure and, hence, a larger conformational entropy. Adsorption on the hydrophobic Teflon surface induces the formation of ordered structural elements, notably an increase in the content of O -helices (cfi, the discussion in Sect. 3.1.4). [Pg.118]

Reverse-phase HPLC (RP-HPLC) separates proteins on the basis of differences in their surface hydophobicity. The stationary phase in the HPLC column normally consists of silica or a polymeric support to which hydrophobic arms (usually alkyl chains, such as butyl, octyl or octadecyl groups) have been attached. Reverse-phase systems have proven themselves to be a particularly powerful analytical technique, capable of separating very similar molecules displaying only minor differences in hydrophobicity. In some instances a single amino acid substitution or the removal of a single amino acid from the end of a polypeptide chain can be detected by RP-HPLC. In most instances, modifications such as deamidation will also cause peak shifts. Such systems, therefore, may be used to detect impurities, be they related or unrelated to the protein product. RP-HPLC finds extensive application in, for example, the analysis of insulin preparations. Modified forms, or insulin polymers, are easily distinguishable from native insulin on reverse-phase columns. [Pg.184]

Fig. 10.5 Sequential resonance assignment of the polypeptide backbone of 2H, 3C, 5N-labeled DHNA using the HNCA triple resonance experiment, which connects the Hn and 15N resonances of the amide groups with the sequential and intraresidual 13C chemical shifts. The dotted... Fig. 10.5 Sequential resonance assignment of the polypeptide backbone of 2H, 3C, 5N-labeled DHNA using the HNCA triple resonance experiment, which connects the Hn and 15N resonances of the amide groups with the sequential and intraresidual 13C chemical shifts. The dotted...
Tyrosine fluorescence emission in proteins and polypeptides usually has a maximum between 303 and 305 nm, the same as that for tyrosine in solution. Compared to the Stokes shift for tryptophan fluorescence, that for tyrosine appears to be relatively insensitive to the local environment, although neighboring residues do have a strong effect on the emission intensity. While it is possible for a tyrosine residue in a protein to have a higher quantum yield than that of model compounds in water, for example, if the phenol side chain is shielded from solvent and the local environment contains no proton acceptors, many intra- and intermolecular interactions result in a reduction of the quantum yield. As discussed below, this is evident from metal- and ionbinding data, from pH titration data, and from comparisons of the spectral characteristics of tyrosine in native and denatured proteins. [Pg.22]


See other pages where Polypeptides shifts is mentioned: [Pg.253]    [Pg.253]    [Pg.178]    [Pg.486]    [Pg.213]    [Pg.457]    [Pg.460]    [Pg.129]    [Pg.17]    [Pg.38]    [Pg.86]    [Pg.151]    [Pg.340]    [Pg.342]    [Pg.350]    [Pg.354]    [Pg.355]    [Pg.385]    [Pg.353]    [Pg.570]    [Pg.51]    [Pg.56]    [Pg.63]    [Pg.68]    [Pg.74]    [Pg.130]    [Pg.275]    [Pg.189]    [Pg.89]    [Pg.20]    [Pg.51]    [Pg.51]    [Pg.58]    [Pg.393]    [Pg.128]    [Pg.417]    [Pg.161]    [Pg.46]    [Pg.47]    [Pg.54]    [Pg.63]    [Pg.277]    [Pg.347]    [Pg.49]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Proton chemical shifts polypeptides

© 2024 chempedia.info