Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers matter

E. D. Weil, Proc. Rec. Adv. Flame Retard. Polym. Matter, (L. Menachem, ed.), I Business Communication Co., Norwalk, Connecticut (1990). [Pg.438]

This response, which is unique to glassy polymers, is possible, in spite of the very substantial magnitudes of ej of the order of 3 4, because of the entangled nature of polymer molecules in the initial precursor state where the uniaxially dilated polymer matter, with substantially reduced density, remains fully load-bearing, in the form of stretched elastomer nano-fibrils. [Pg.343]

Many complex systems have been spread on liquid interfaces for a variety of reasons. We begin this chapter with a discussion of the behavior of synthetic polymers at the liquid-air interface. Most of these systems are linear macromolecules however, rigid-rod polymers and more complex structures are of interest for potential optoelectronic applications. Biological macromolecules are spread at the liquid-vapor interface to fabricate sensors and other biomedical devices. In addition, the study of proteins at the air-water interface yields important information on enzymatic recognition, and membrane protein behavior. We touch on other biological systems, namely, phospholipids and cholesterol monolayers. These systems are so widely and routinely studied these days that they were also mentioned in some detail in Chapter IV. The closely related matter of bilayers and vesicles is also briefly addressed. [Pg.537]

Kremer K 1996 Computer simulation methods for polymer physics Monte Carlo and Molecular Dynamics of Condensed Matter Systems vol 49, ed K Binder and G Ciccotti (Bologna Italian Physical Society) pp 669-723... [Pg.2280]

We are all familiar with tire tliree states of matter gases, liquids and solids. In tire 19tli century the liquid crystal state was discovered [1 and 2] tliis can be considered as tire fourtli state of matter [3].The essential features and properties of liquid crystal phases and tlieir relation to molecular stmcture are discussed here. Liquid crystals are encountered in liquid crystal displays (LCDs) in digital watches and otlier electronic equipment. Such applications are also considered later in tliis section. Surfactants and lipids fonn various types of liquid crystal phase but this is discussed in section C2.3. This section focuses on low-molecular-weight liquid crystals, polymer liquid crystals being discussed in tire previous section. [Pg.2542]

The changes, however, are both numerous and significant. First of all, there is a change in the organization of the subject matter. For example, material formerly contained in the section entitled Analytical Chemistry is now grouped by operational categories spectroscopy electrolytes, electromotive force, and chemical equilibrium and practical laboratory information. Polymers, rubbers, fats, oils, and waxes constitute a large independent section. [Pg.1286]

Throughout this discussion we have used the numerical fraction of molecules in a class as the weighting factor for that portion of the population. This restriction is not necessary some other weighting factor could be used equally well. As a matter of fact, one important type of average encountered in polymer chemistry is the case where the mass fraction of the ith component is used as the weighting factor. Defining the mass of material in the ith class as mj, we write... [Pg.37]

The molecules used in the study described in Fig. 2.15 were model compounds characterized by a high degree of uniformity. When branching is encountered, it is generally in a far less uniform way. As a matter of fact, traces of impurities or random chain transfer during polymer preparation may result in a small amount of unsuspected branching in samples of ostensibly linear molecules. Such adventitious branched molecules can have an effect on viscosity which far exceeds their numerical abundance. It is quite possible that anomalous experimental results may be due to such effects. [Pg.127]

As we did in the case of relaxation, we now compare the behavior predicted by the Voigt model—and, for that matter, the Maxwell model—with the behavior of actual polymer samples in a creep experiment. Figure 3.12 shows plots of such experiments for two polymers. The graph is on log-log coordinates and should therefore be compared with Fig. 3.11b. The polymers are polystyrene of molecular weight 6.0 X 10 at a reduced temperature of 100°C and cis-poly-isoprene of molecular weight 6.2 X 10 at a reduced temperature of -30°C. [Pg.170]

A moment s reflection reveals that the effect on v of transfer to polymer is different from the effects discussed above inasmuch as the overall degree of polymerization is not decreased by such transfers. Although transfer to polymer is shown in one version of Eq. (6.84), the present discussion suggests that this particular transfer is not pertinent to the effect described. Investigation of chain transfer to polymer is best handled by examining the extent of branching in the product. We shall not pursue the matter of evaluating the transfer constants, but shall consider instead two specific examples of transfer to polymer. [Pg.394]

Block copolymers are closer to blends of homopolymers in properties, but without the latter s tendency to undergo phase separation. As a matter of fact, diblock copolymers can be used as surfactants to bind immiscible homopolymer blends together and thus improve their mechanical properties. Block copolymers are generally prepared by sequential addition of monomers to living polymers, rather than by depending on the improbable rjr2 > 1 criterion in monomers. [Pg.434]

We assign an index number to each of the polymer molecules and pick up the analysis of the problem after i polymer molecules have already been placed on an otherwise empty lattice. Our first question, then, concerns the number of ways the (i + l)th polymer molecule can be placed in the lattice. The polymer is to be positioned one repeat unit at a time, so it is an easy matter to count the number of available positions for the first segment of the (i + l)th molecule. Since the total lattice consists of N sites and ni of these are already occupied, the first segment of the (i + l)th molecule can be placed on any one of the N - ni remaining sites. [Pg.514]

Since the 0 s are fractions, the logarithms in Eq. (8.38) are less than unity and AGj is negative for all concentrations. In the case of athermal mixtures entropy considerations alone are sufficient to account for polymer-solvent miscibility at all concentrations. Exactly the same is true for ideal solutions. As a matter of fact, it is possible to regard the expressions for AS and AGj for ideal solutions as special cases of Eqs. (8.37) and (8.38) for the situation where n happens to equal unity. The following example compares values for ASj for ideal and Flory-Huggins solutions to examine quantitatively the effect of variations in n on the entropy of mixing. [Pg.517]

In this chapter, and throughout this entire book for that matter, we have been concerned with uncharged polymers. We shall conclude this chapter with a brief discussion of the osmostic pressure of charged polymer molecules. [Pg.568]

We consider this system in an osmotic pressure experiment based on a membrane which is permeable to all components except the polymeric ion P that is, solvent molecules, M" , and X can pass through the membrane freely to establish the osmotic equilibrium, and only the polymer is restrained. It does not matter whether pure solvent or a salt solution is introduced across the membrane from the polymer solution or whether the latter initially contains salt or not. At equilibrium both sides of the osmometer contain solvent, M , and X in such proportions as to satisfy the constaints imposed by electroneutrality and equilibrium conditions. [Pg.569]

The scattering of visible light by polymer solutions is our primary interest in this chapter. However, since is a function of the ratio R/X, as we saw in the last section, the phenomena we discuss are applicable to the entire range of the electromagnetic spectrum. Accordingly, a general review of the properties of this radiation and its interactions with matter is worthwhile before a specific consideration of scattering. [Pg.664]

The dry-extmsion process consists of four operations dissolution of the polymer in a volatile solvent filtration of the solution to remove insoluble matter extmsion of the solution to form fibers and lubrication, yam formation, and packaging. [Pg.296]

Solution Filtration. The polymer solution, free of unacetylated ceUulose, rigid particle contaminants, and dirt, must pass through spinnerets with holes of 30—80 ]lni diameter. Multistage filtration, usuaUy through plate-and-frame filter presses with fabric and paper filter media, removes the extraneous matter before extmsion. Undesirable gelatinous particles, such as the hemiceUulose acetates from ceUulose impurities, tend to be sheared into smaller particles rather than removed. The solution is also aUowed to degas in hoi ding tanks after each state of filtration. [Pg.296]

Extrusion. The filtered, preheated polymer solution is deHvered to the spinneret for extmsion at constant volume by accurate metering pumps. The spinnerets are of stainless steel or another suitable metal and may contain from thirteen to several hundred precision-made holes to provide a fiber of desired si2e and shape. AuxUiary filters are inserted in front of the fixture that holds the spinneret and in the spinneret itself to remove any residual particulate matter in the extmsion solution. [Pg.296]

A fourth mechanism is called sweep flocculation. It is used primarily in very low soflds systems such as raw water clarification. Addition of an inorganic salt produces a metal hydroxide precipitate which entrains fine particles of other suspended soflds as it settles. A variation of this mechanism is sometimes employed for suspensions that do not respond to polymeric flocculants. A soHd material such as clay is deUberately added to the suspension and then flocculated with a high molecular weight polymer. The original suspended matter is entrained in the clay floes formed by the bridging mechanism and is removed with the clay. [Pg.34]

In the area of municipal and iadustrial wastewater treatment, the principal environmental issue is the toxicity of residual flocculating agents ia the effluent. Laboratory studies have shown that cationic polymers are toxic to fish because of the iateraction of these polymers with giU. membranes. Nonionic and anionic polymers show no toxicity (82,83). Other studies have shown that ia natural systems the suspended inorganic matter and humic substances substantially reduce the toxicity of added cationic polymer, and the polymers have been used successfully ia fish hatcheries (84—86). Based on these results, the EPA has added a protocol for testing these polymers for toxicity toward fish ia the presence of humic acids (87). The addition of anionic polymers to effluent streams containing cationic polymers to reduce their toxicity has been mentioned ia the patent Hterature (83). [Pg.37]


See other pages where Polymers matter is mentioned: [Pg.295]    [Pg.471]    [Pg.166]    [Pg.85]    [Pg.309]    [Pg.86]    [Pg.174]    [Pg.76]    [Pg.54]    [Pg.295]    [Pg.471]    [Pg.166]    [Pg.85]    [Pg.309]    [Pg.86]    [Pg.174]    [Pg.76]    [Pg.54]    [Pg.1233]    [Pg.2697]    [Pg.470]    [Pg.16]    [Pg.116]    [Pg.199]    [Pg.200]    [Pg.203]    [Pg.219]    [Pg.248]    [Pg.277]    [Pg.277]    [Pg.329]    [Pg.396]    [Pg.527]    [Pg.569]    [Pg.75]    [Pg.133]    [Pg.143]    [Pg.257]   


SEARCH



© 2024 chempedia.info