Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization particle-forming chain free-radical

The completion stage is identified by the fact that all the monomer has diffused into the growing polymer particles (disappearance of the monomer droplet) and reaction rate drops off precipitously. Because the free radicals that now initiate polymerization in the monomer-swollen latex particle can more readily attack unsaturation of polymer chains, the onset of gel is also characteristic of this third stage. To maintain desirable physical properties of the polymer formed, emulsion SBR is usually terminated just before or at the onset of this stage. [Pg.495]

First, the water soluble initiator decomposes to form free radicals in the aqueous phase. These free radicals then add to comonomers dissolved in the aqueous phase to start a free radical oligomer chain. If the monomers are present to a greater concentration than the saturation concentration, they form a separate comonomer droplet phase. This phase then acts as a reservoir to feed the polymerization which occurs in the polymer (latex) particles. Monomers diffuse into the aqueous phase, diffuse into the polymer particles, and polymerize. [Pg.363]

Dimethacrylate monomers were polymerized by free radical chain reactions to yield crosslinked networks which have dental applications. These networks may resemble ones formed by stepwise polymerization reactions, in having a microstructure in which crosslinked particles are embedded in a much more lightly crosslinked matrix. Consistently, polydimethacrylates were found to have very low values of Tg by reference to changes in modulus of elasticity determined by dynamic mechanical analysis. [Pg.427]

The chain fragments formed by the recombination of free radicals can be reconverted into radicals by a variety of reinitiation processes, some of which are listed in Table 1. Such reactions can occur in the gas phase via electron collision and on the polymer surface by impact of charged particles or photon absorption. Reinitiation may also be induced in both the gas phase and on the polymer surface by hydrogen transfer reactions. These last processes are similar to the chain transfer processes which occur during homogeneous polymerization. Expressions for the rates of reinitiation are given by Eqns. 20 through 23. [Pg.53]

In the case of more water-soluble monomers and (amphiphilic) macromonomers, the Smith-Ewart [16] expression does not satisfactorily describe the particle nucleation. The HUFT [9,10] theory, however, satisfactorily describes the polymerization behavior or the particle nucleation of such unsaturated hydrophilic and amphiphilic monomers. The HUFT approach implies that primary particles are formed in the aqueous phase by precipitation of oligomer radicals above a critical chain length. The basic principals of the HUFT theory is that formation of primary particles will take place up to a point where the rate of formation of radicals in the aqueous phase is equal to the rate of disappearance of radicals by capture of radicals by particles already formed. Stabilization of primary particles in emulsifier-free emulsion polymerization may be achieved if the monomer (or macromonomer) contains surface active groups. Besides, the charged radical fragments of initiator increases the colloidal stability of the polymer particles. [Pg.15]

Aqueous suspension polymerization requires the usual additives, such as free radical initiators, colloidal dispersants (not always), and chain transfer agents to control molecular weight. After the process is completed, the suspension contains spherical particles approximately 100 pm in diameter. Suspension polymers are available as free-flowing powder or in pellet form for extrusion or injection molding.58... [Pg.24]

Emulsion polymerization is a free radical initiated chain polymerization in which a monomer or a mixture of monomers is polymerized in aqueous solution of a surfactant to form a product, known as a latex. The most important feature of emulsion polymerization is its heterogeneity from the beginning to the end of the polymerization, to yield in a batch process submicron-sized polymeric particles, often of excellent monodispersity. The main ingredients for conducting... [Pg.167]

Free-Radical Polymerization in Emulsion. In suspension polymerization, the particle size is fixed by the size of the monomer droplet which contains the initiator. Emulsion polymerization differs from suspension polymerization in that the initiator is dissolved in the aqueous phase and the polymer particle grows during polymerization. Free radicals are generated in the water and diffuse to the monomer-water interface. The length of the polymer chain formed, or equivalently the molecular weight, depends on the rate of free radical arrival and termination. S. Katz,... [Pg.8]

The bimolecular termination reaction in free-radical polymerization is a typical example of a diffusion controlled reaction, and is chain-length-depen-dent [282-288]. When pseudobulk kinetics appUes, the MWD formed can be approximated by that resulting from bulk polymerization, and it can be solved numerically [289-291]. As in the other extreme case where no polymer particle contains more than one radical, the so-caUed zero-one system, the bimolecular termination reactions occur immediately after the entrance of second radical, so unique features of chain-length-dependence cannot be found. Assuming that the average time interval between radical entries is the same for all particles and that the weight contribution from ohgomeric chains formed... [Pg.89]

Nonlinear polymer formation in emulsion polymerization is a challenging topic. Reaction mechanisms that form long-chain branching in free-radical polymerizations include chain transfer to the polymer and terminal double bond polymerization. Polymerization reactions that involve multifunctional monomers such as vinyl/divinyl copolymerization reactions are discussed separately in Sect. 4.2.2. For simplicity, in this section we assume that both the radicals and the polymer molecules that formed are distributed homogeneously inside the polymer particle. [Pg.94]

Candau and co-workers were the first to address the issue of particle nu-cleation for the polymerization of AM [13, 14] in an inverse microemulsion stabilized by AOT. They found that the particle size of the final microlatex (d 20-40 nm) was much larger than that of the initial monomer-swollen droplets (d 5-10 nm). Moreover, each latex particle formed contained only one polymer chain on average. It is believed that nucleation of the polymer particle occurs for only a small fraction of the final nucleated droplets. The non-nucleated droplets also serve as monomer for the growing particles either by diffusion through the continuous phase and/or by collisions between droplets. But the enormous number of non-nucleated droplets means that some of the primary free radicals continuously generated in the system will still be captured by non-nucleated droplets. This means that polymer particle nucleation is a continuous process [ 14]. Consequently, each latex particle receives only one free radical, resulting in the formation of only one polymer chain. This is in contrast to the large number of polymer chains formed in each latex particle in conventional emulsion polymerization, which needs a much smaller amount of surfactant compared to microemulsion polymerization. [Pg.261]

We will consider the MWD in two simple cases. The first is when chain transfer is sufficiently rapid to ensure that all other chain-stopping events can be ignored. In such a situation, whereas the compartmentalized nature of the reaction may affect the rate of initiation of new chains, it will not affect the lifetime distributions of the chains once they are formed. The MWD may then be found from the bulk formulas, provided only that the average number of free radicals per particle, is known. Such an approach has been used by Friis et al. (1974) to calculate the MWD evolved in a vinyl acetate emukion polymerization. These authors included in addition the mechanisms of terminal bond polymerization and of transfer to polymer (both of which cause broadening). The formulas required for the in corporation of these mechanisms could be taken from bulk theory. [Pg.119]

It is important to note that, even in this present limiting case of a transfer-dominated system, the chain-stoppage mechanism can be changed by compartmentalization. Thus, the MWD formed in the polymerization of styrene appears to be transfer-dominated in some emulsion systems (Piirma et al., 1975) but to be combination dominated in bulk or solution (George, 1967). This difference occurs because, in serene emulsion systems, the rate of radical entry into a particle is slow, and most particles usually contain either zero or one free radical. In the state one particles (Section I,B), the growing free radical has time to undergo several transfer reactions before a further entry causes radical annihilation. [Pg.119]

Since the separate time scale condition is clearly valid for most of the polymerization process, one may say that each polymer chain is formed inside a particle of unchanging siz wherein all rate coefficients are constant and the distribution of free radicals has its steady-state value, for each volume V. Any residual effect of the PSD on the MWD would reside presumably in the effects of the PSD on the kinetic parameters (e.g., p. c, and to a lesser extent fc). Conversely, the MWD would possibly influence the PSD through its effects on the swelling of the particles by the monomer the effect, if it exists, is likely to ha small. [Pg.142]


See other pages where Polymerization particle-forming chain free-radical is mentioned: [Pg.22]    [Pg.200]    [Pg.380]    [Pg.4674]    [Pg.163]    [Pg.390]    [Pg.226]    [Pg.191]    [Pg.195]    [Pg.201]    [Pg.204]    [Pg.210]    [Pg.206]    [Pg.353]    [Pg.406]    [Pg.407]    [Pg.413]    [Pg.656]    [Pg.186]    [Pg.128]    [Pg.7]    [Pg.206]    [Pg.141]    [Pg.4]    [Pg.25]    [Pg.134]    [Pg.238]    [Pg.264]    [Pg.495]    [Pg.146]    [Pg.212]    [Pg.397]    [Pg.495]    [Pg.216]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Chain radical

Free chains

Free radical chain polymerization

Free radicals radical chains

Free-particle

Free-radical chain

Particle form

Polymerization free radical

Radical chain polymerization

© 2024 chempedia.info