Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization demonstrated applications

As an initial (demonstration) application of the Icon/1000 control system, we automated two simultaneous acrylic lab polymerizations. In this application, heaters, agitators, and metering pumps are controlled. A batch proceeds automatically from state to state unless the operator intervenes through one of a series of color CRT touch screens allowing him to take complete manual control of the batch for as long as he desires. All important process variables are continually monitored and recorded. The entire control scheme was created, tested, and modified several times in the space of two months, without formal instruction, by a chemical engineer with little previous programming experience and no previous experience at all with this system. [Pg.475]

Seen the list of demonstrated applications, numerous possibilities exist for the integration of homogeneous catalysis and a membrane separation. A complicating factor, however, is the relatively limited availability of solvent-resistant membranes. This will require a substantial development effort to obtain more solvent-stable membranes, including both polymeric and inorganic ones. [Pg.530]

One of the earliest chemical applications of SCFs was the polymerization of ethylene, C2H4. As pointed out by McHugh and Krukonis, [10] this process remains an important landmark in supercritical chemistry because the operating temperatures and pressures are much higher than those proposed in most new applications. Therefore, the C2H4 polymerization demonstrates that engineering problems are unlikely to be the major obstacle to the introduction of new SCF processes. [Pg.474]

Applications of microparticles can be found in medicine, biochemistry, colloid chemistry, and aerosol research [48]. Some uses include separation media for chromatographic application, high surface area substrates for immobilized enzymes, standards for calibration, spacers in optical cavities and liquid crystal displays, and three-dimensional microenvironments for cell encapsulation. It should be stressed that even a scaled-up MF synthesis enables generation of a relatively small amount of particles, in comparison with conventional emulsion, dispersions, or suspension polymerizations. Thus, most practical applications of such microbeads should utilize their high-value unique properties, for example, a uniform distribution of sizes and control of morphology, structure, and shape. Therefore, some of the demonstrated applications of polymer microbeads are still in the proof-of-concept stage. [Pg.230]

The wide variety of coupling methods adapted from organic synthesis to condensation polymerization of just one CP can be appreciated from Fig. 5-12. for poly(pheny-lene). Typical condensations and eliminations adapted to syntheses of such CPs as poly(phenylene) and poly(phenylene vinylene) (P(PV)) are illustrated in Fig. 5-13. Fig. 5-14 shows the variety of precursor routes available to P(PV). More recently, the Yu group [86] has demonstrated application of Pd-catalyzed Stille and Heck reactions to the synthesis of poly(thiophene) (P(T)) derivatives (cf. Fig. 5-15. Besides the Grignard couplings such as shown in Eq. 1.6, Chapter 1, P(T) s can also be prepared via a variety of other procedures, such as Friedel-Crafts alkylation [87], and direct oxidation with FeClj as for P(Py) above. [Pg.119]

Also, new areas for applications are opening up. A most recent development has been the successful demonstration of three-dimensional imaging of ceramic and polymeric materials by solid state NMR techniques. This area is most likely to expand considerably. [Pg.471]

In Sec. 3 our presentation is focused on the most important results obtained by different authors in the framework of the rephca Ornstein-Zernike (ROZ) integral equations and by simulations of simple fluids in microporous matrices. For illustrative purposes, we discuss some original results obtained recently in our laboratory. Those allow us to show the application of the ROZ equations to the structure and thermodynamics of fluids adsorbed in disordered porous media. In particular, we present a solution of the ROZ equations for a hard sphere mixture that is highly asymmetric by size, adsorbed in a matrix of hard spheres. This example is relevant in describing the structure of colloidal dispersions in a disordered microporous medium. On the other hand, we present some of the results for the adsorption of a hard sphere fluid in a disordered medium of spherical permeable membranes. The theory developed for the description of this model agrees well with computer simulation data. Finally, in this section we demonstrate the applications of the ROZ theory and present simulation data for adsorption of a hard sphere fluid in a matrix of short chain molecules. This example serves to show the relevance of the theory of Wertheim to chemical association for a set of problems focused on adsorption of fluids and mixtures in disordered microporous matrices prepared by polymerization of species. [Pg.294]

Recently, new approaches of sorbent construction for reversed-phase chromatography have been developed. Silicas modified with hydrocarbon chains have been investigated the most and broadly utilized for these aims. Silica-based materials possess sufficient stability only in the pH 2-8 range. Polymeric HPLC sorbents remove these limitations. Tweeten et al. [108] demonstrated the application of stroongly crosslinked styrene-divinylbenzene resins for reversed-phase chromatography of peptides. [Pg.167]

In polyester synthesis via ring-opening polymerizations, metal catalysts are often used. For medical applications of polyesters, however, there has been concern about harmful effects of the metallic residues. Enzymatic synthesis of a metal-free polyester was demonstrated by the polymerization of l,4-dioxan-2-one using Candida antarctica lipase (lipase CA). Under appropriate reaction conditions, the high molecular weight polymer (molecular weight = 4.1 x 10" ) was obtained. [Pg.208]

Although the feasibility of direct probe MS for the analysis of additives in complex polymeric matrices has been demonstrated (Section 6.4), application is limited, difficult and requires above-average mass-spectroscopic expertise. Direct desorption in the MS probe is usually limited to screening of volatile components. Direct multicomponent spectroscopic analysis has other hurdles to overcome (UV/VIS lack of spectral discrimination IR/R functional-group recognition only, with no discriminative power for additives with similar functionalities NIRS unsuitable for R D problems NMR sensitivity). [Pg.737]

A model-free method for the analysis of lattice distortions is readily established from Eq. (8.13). It is an extension of Stokes [27] method for deconvolution and has been devised by Warren and Averbach [28,29] (textbooks Warren [97], Sect. 13.4 Guinier [6], p. 241-249 Alexander [7], Chap. 7). For the application to common soft matter it is of moderate value only, because the required accuracy of beam profile measurement is rarely achievable. On the other hand, for application to advanced polymeric materials its applicability has been demonstrated [109], although the classical graphical method suffers from extensive approximations that reduce its value for the typical polymer with small crystal sizes and stronger distortions. [Pg.122]


See other pages where Polymerization demonstrated applications is mentioned: [Pg.234]    [Pg.285]    [Pg.532]    [Pg.34]    [Pg.187]    [Pg.695]    [Pg.554]    [Pg.86]    [Pg.135]    [Pg.54]    [Pg.14]    [Pg.181]    [Pg.211]    [Pg.385]    [Pg.451]    [Pg.471]    [Pg.175]    [Pg.50]    [Pg.150]    [Pg.198]    [Pg.293]    [Pg.659]    [Pg.473]    [Pg.215]    [Pg.77]    [Pg.659]    [Pg.224]    [Pg.53]    [Pg.319]    [Pg.413]    [Pg.485]    [Pg.272]    [Pg.43]    [Pg.29]    [Pg.193]    [Pg.223]    [Pg.136]    [Pg.406]    [Pg.160]    [Pg.509]   
See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Demonstration

Demonstrators

© 2024 chempedia.info