Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerisation reactions oxidation catalysts

Tripotassium hexakiscyanoferrate [13746-66-2] K2[Fe(CN)g], forms anhydrous red crystals. The crystalline material is dimorphic both orthorhombic and monoclinic forms are known. The compound is obtained by chemical or electrolytic oxidation of hexacyanoferrate(4—). K2[Fe(CN)g] is soluble in water and acetone, but insoluble in alcohol. It is used in the manufacture of pigments, photographic papers, leather (qv), and textiles and is used as a catalyst in oxidation and polymerisation reactions. [Pg.435]

Lead tetraalkyl derivatives are used in catalytic systems to polymerise olefines, as catalysts of re-etherification and polycondensation, to speed up the alkylation of lateral chains of alkylbenzenes with ethylene and its derivatives. An addition of lead tetraalkyl derivatives (0.05-2% of alkylben-zene quantity) to catalysts of the liquid-phase oxidation of alkylbenzenes speeds up the oxidation. Tetraethyllead proved to be a good initiator for Diels-Alder reactions to join polymers with alkenylsiloxy chains and can be used as an additive to reduce the attrition and wear of rubbing metal parts. Tetrabutyllead is an active cross-linking agent for polyethylene and modifying agent for plastics. [Pg.488]

Major and trace levels of metal initiators or catalysts can be present, such as Al, Ti, Fe, V, Cr, Fe, Cu, Ca, Zr, B, K, Na, Li and others which originate from organometallic salts. Catalysts may also include oxides and acetals that coordinate with such metals as Co, Zn, P, Pb, Co, Mn, Ge and Sb. Some of these metal salts can be used in the trans-etherification or polymerisation reactions to manufacture a range of polymers, e.g. metal acetals. Catalysts also play an important role in the selective PET polymerisation reactions. [Pg.114]

An important characteristic of alkylene oxide polymerisation with DMC catalysts is the very low reaction rates obtained in EO coordinative polymerisation. EO, which is much more reactive than PO in anionic polymerisation, is less reactive than PO in the coordinative polymerisation [35, 68]. A possible explanation of this behaviour is the fact that PO is a more basic monomer than EO due to the electron release effect of the methyl substituent in the oxiranic ring (the electron density at the oxygen atom of the PO ring is higher than that in the EO ring). As an immediate consequence, PO, is more basic, and is more strongly co-ordinated (and more strongly activated too) to the active sites of DMC catalysts than EO, the less basic monomer. [Pg.176]

Vegetable oil-based poly(ester amide)s are prepared by a three-step reaction procedure in which a base such as sodium methoxide is used as the catalyst for the first two steps and metal oxide/hydroxide is used for the last step of the reaction (Fig. 5.2). In the first step, methyl esters of the fatty acids are produced by transesterifiction of oil with methanol, followed by transformation to dihydroxy fatty amide by amidation reaction with dihydroxyalkylamine and, finally, esterification reaction by treatment with dibasic acid or anhydride at a relatively high temperature to obtain the desired poly (ester amide). This may be done either by azeotropic distillation or by direct polycondensation under an inert atmosphere. Poly(ester amide) can also be synthesised at a low temperature through a condensation polymerisation reaction in the absence of an organic solvent. In this reaction, V,V-bis(2-hydroxyalkyl) fatty amide and dibasic anhydride are heated at a temperature lower than the onset of the melting points of the component. By-products, such as water, are removed by a vacuum technique. [Pg.128]

Boron phosphate, BPO4, is a particularly versatile catalyst and is capable of effecting dehydration, alkylation, oxidation, esterification, isomerisation, disproportionation, condensation, and polymerisation reactions (Table 12.48). Samples with surface areas of up to 200 raVg can be prepared as indicated by Equations 5.66 and 5.68. [Pg.1184]

Polyether Polyols. Polyether polyols are addition products derived from cyclic ethers (Table 4). The alkylene oxide polymerisation is usually initiated by alkah hydroxides, especially potassium hydroxide. In the base-catalysed polymerisation of propylene oxide, some rearrangement occurs to give aHyl alcohol. Further reaction of aHyl alcohol with propylene oxide produces a monofunctional alcohol. Therefore, polyether polyols derived from propylene oxide are not truly diftmctional. By using sine hexacyano cobaltate as catalyst, a more diftmctional polyol is obtained (20). Olin has introduced the diftmctional polyether polyols under the trade name POLY-L. Trichlorobutylene oxide-derived polyether polyols are useful as reactive fire retardants. Poly(tetramethylene glycol) (PTMG) is produced in the acid-catalysed homopolymerisation of tetrahydrofuran. Copolymers derived from tetrahydrofuran and ethylene oxide are also produced. [Pg.347]

Under polymerisation conditions, the active center of the transition-metal haHde is reduced to a lower valence state, ultimately to which is unable to polymerise monomers other than ethylene. The ratio /V +, in particular, under reactor conditions is the determining factor for catalyst activity to produce EPM and EPDM species. This ratio /V + can be upgraded by adding to the reaction mixture a promoter, which causes oxidation of to Examples of promoters in the eadier Hterature were carbon tetrachloride, hexachlorocyclopentadiene, trichloroacetic ester, and hensotrichloride (8). Later, butyl perchlorocrotonate and other proprietary compounds were introduced (9,10). [Pg.503]

Examples of the Activity of the Catalyst Formed by the Reaction of Transition Metal Organometallic Compounds with Oxide Supports during Ethylene Polymerisation... [Pg.188]

The F / Cl exchange in chloroalkanes is a route to HFCs. For example, different routes can be possible for the synthesis of CF3CH2F [1,2 ]. Our focus is on its preparation from CF3CH2CI and HF with chromium (HI) oxide as a catalyst. This fluorination is accompanied by a dehydrofluorination which produces chloroalkenes (mainly CF2=CHC1) resulting in a deactivation of the catalyst Indeed this haloalkene could polymerise and thus lead to coke formation. The reactions involved are ... [Pg.379]

Freeder, B. G. et al., J. Loss Prev. Process Ind., 1988, 1, 164-168 Accidental contamination of a 90 kg cylinder of ethylene oxide with a little sodium hydroxide solution led to explosive failure of the cylinder over 8 hours later [1], Based on later studies of the kinetics and heat release of the poly condensation reaction, it was estimated that after 8 hours and 1 min, some 12.7% of the oxide had condensed with an increase in temperature from 20 to 100°C. At this point the heat release rate was calculated to be 2.1 MJ/min, and 100 s later the temperature and heat release rate would be 160° and 1.67 MJ/s respectively, with 28% condensation. Complete reaction would have been attained some 16 s later at a temperature of 700°C [2], Precautions designed to prevent explosive polymerisation of ethylene oxide are discussed, including rigid exclusion of acids covalent halides, such as aluminium chloride, iron(III) chloride, tin(IV) chloride basic materials like alkali hydroxides, ammonia, amines, metallic potassium and catalytically active solids such as aluminium oxide, iron oxide, or rust [1] A comparative study of the runaway exothermic polymerisation of ethylene oxide and of propylene oxide by 10 wt% of solutions of sodium hydroxide of various concentrations has been done using ARC. Results below show onset temperatures/corrected adiabatic exotherm/maximum pressure attained and heat of polymerisation for the least (0.125 M) and most (1 M) concentrated alkali solutions used as catalysts. [Pg.315]

Figure 20 Reaction scheme for the anionic polymerisation of propylene oxide to form PPG (R is the part of alcohol initiator, M the metal from the catalyst and P the propylene oxide). Figure 20 Reaction scheme for the anionic polymerisation of propylene oxide to form PPG (R is the part of alcohol initiator, M the metal from the catalyst and P the propylene oxide).
An alternative approach to the oxidation of alcohols to ketones was also reported by Shea et al., who incorporated a nitroxide catalyst into a polymeric matrix [56], A polymerisable 2,2,6,6-tetramethylpiperidine (90) was derivatised as /V-allyl-amine (91), which was removed after polymerisation, leaving a catalytically active nitroxide (92) able to form stable free radicals, thereby efficiently catalysing the reaction of oxidation with yields ranging from 55 to 88%. [Pg.331]


See other pages where Polymerisation reactions oxidation catalysts is mentioned: [Pg.76]    [Pg.637]    [Pg.335]    [Pg.2539]    [Pg.343]    [Pg.443]    [Pg.52]    [Pg.150]    [Pg.8]    [Pg.852]    [Pg.64]    [Pg.123]    [Pg.173]    [Pg.502]    [Pg.717]    [Pg.717]    [Pg.290]    [Pg.74]    [Pg.490]    [Pg.139]    [Pg.304]    [Pg.352]    [Pg.352]    [Pg.194]    [Pg.1134]    [Pg.182]    [Pg.188]    [Pg.81]    [Pg.207]    [Pg.235]    [Pg.62]    [Pg.69]    [Pg.1571]   
See also in sourсe #XX -- [ Pg.270 ]

See also in sourсe #XX -- [ Pg.270 ]




SEARCH



Catalysts oxidation reactions

Oxidation polymerisation

Oxidative polymerisation

Polymerisation catalysts

Polymerisation reactions

Reaction oxides catalysts

© 2024 chempedia.info