Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer Viscoelasticity polymers

Aklones, J. J., Mac Knight, W. J., and Shen, M., Introduction to Polymer Viscoelasticity,VIiley-lnteTScience, New York, 1972. [Pg.197]

As mentioned earlier, the contact-mechanics-based experimental studies of interfacial adhesion primarily include (1) direct measurements of surface and interfacial energies of polymers and self-assembled monolayers (2) quantitative studies on the role of interfacial coupling agents in the adhesion of elastomers (3) adhesion of microparticles on surfaces and (4) adhesion of viscoelastic polymer particles. In these studies, a variety of experimental tools have been employed by different researchers. Each one of these tools offers certain advantages over the others. These experimental studies are reviewed in Section 4. [Pg.80]

Some of the recent work in contact mechanics is focused on understanding the adhesion of viscoelastic polymers and dynamic contributions to the adhesion energy this work is summarized in Section 5. Sections 6.1 and 6.2 include some of the current applications of contact mechanics in the field of adhesion science. These include possible studies on contact induced interfacial rearrangements and acid-base type of interactions. [Pg.80]

Viscoelastic polymers essentially dominate the multi-billion dollar adhesives market, therefore an understanding of their adhesion behavior is very important. Adhesion of these materials involves quite a few chemical and physical phenomena. As with elastic materials, the chemical interactions and affinities in the interface provide the fundamental link for transmission of stress between the contacting bodies. This intrinsic resistance to detachment is usually augmented several folds by dissipation processes available to the viscoelastic media. The dissipation processes can have either a thermodynamic origin such as recoiling of the stretched polymeric chains upon detachment, or a dynamic and rate-sensitive nature as in chain pull-out, chain disentanglement and deformation-related rheological losses in the bulk of materials and in the vicinity of interface. [Pg.122]

There are two further related sets of tests that can be used to give information on the mechanical properties of viscoelastic polymers, namely creep and stress relaxation. In a creep test, a constant load is applied to the specimen and the elongation is measured as a function of time. In a stress relaxation test, the specimen is strained quickly to a fixed amount and the stress needed to maintain this strain is also measured as a function of time. [Pg.104]

Polymers which creep readily have large values of / polymers which hardly creep at all have small values. For viscoelastic polymers below their glass transition temperature, there is a characteristic creep curve, as illustrated in Figure 7.6. [Pg.104]

Figure 7.6 Typical creep curve for a viscoelastic polymer... Figure 7.6 Typical creep curve for a viscoelastic polymer...
Stress relaxation tests are alternative ways of measuring the same basic phenomenon in viscoelastic polymers as creep tests, Le. the time-dependent nature of their response to an applied stress. As such, they have also been of value in understanding the behaviour of these materials. The essence of stress relaxation tests is that strain increases with time for a given stress, so that if stress is decreased with time in a controlled manner ( relaxed ), a state... [Pg.105]

This second group of tests is designed to measure the mechanical response of a substance to applied vibrational loads or strains. Both temperature and frequency can be varied, and thus contribute to the information that these tests can provide. There are a number of such tests, of which the major ones are probably the torsion pendulum and dynamic mechanical thermal analysis (DMTA). The underlying principles of these dynamic tests have been covered earlier. Such tests are used as relatively rapid methods of characterisation and evaluation of viscoelastic polymers, including the measurement of T, the study of the curing characteristics of thermosets, and the study of polymer blends and their compatibility. They can be used in essentially non-destructive modes and, unlike the majority of measurements made in non-dynamic tests, they yield data on continuous properties of polymeric materials, rather than discontinuous ones, as are any of the types of strength which are measured routinely. [Pg.116]

Since we are interested in this chapter in analyzing the T- and P-dependences of polymer viscoelasticity, our emphasis is on dielectric relaxation results. We focus on the means to extrapolate data measured at low strain rates and ambient pressures to higher rates and pressures. The usual practice is to invoke the time-temperature superposition principle with a similar approach for extrapolation to elevated pressures [22]. The limitations of conventional t-T superpositioning will be discussed. A newly developed thermodynamic scaling procedure, based on consideration of the intermolecular repulsive potential, is presented. Applications and limitations of this scaling procedure are described. [Pg.658]

For inelastic fluids exhibiting power-law behaviour, the bed expansion which occurs as the velocity is increased above the minimum fluidising velocity follows a similar pattern to that obtained with a Newtonian liquid, with the exponent in equation 6.31 differing by no more than about 10 per cent. There is some evidence, however, that with viscoelastic polymer solutions the exponent may be considerably higher. Reference may be made to work by Srimvas and Chhabra(15) for further details. [Pg.305]

In this introduction, the viscoelastic properties of polymers are represented as the summation of mechanical analog responses to applied stress. This discussion is thus only intended to be very introductory. Any in-depth discussion of polymer viscoelasticity involves the use of tensors, and this high-level mathematics topic is beyond the scope of what will be presented in this book. Earlier in the chapter the concept of elastic and viscous properties of polymers was briefly introduced. A purely viscous response can be represented by a mechanical dash pot, as shown in Fig. 3.10(a). This purely viscous response is normally the response of interest in routine extruder calculations. For those familiar with the suspension of an automobile, this would represent the shock absorber in the front suspension. If a stress is applied to this element it will continue to elongate as long as the stress is applied. When the stress is removed there will be no recovery in the strain that has occurred. The next mechanical element is the spring (Fig. 3.10[b]), and it represents a purely elastic response of the polymer. If a stress is applied to this element, the element will elongate until the strain and the force are in equilibrium with the stress, and then the element will remain at that strain until the stress is removed. The strain is inversely proportional to the spring modulus. The initial strain and the total strain recovery upon removal of the stress are considered to be instantaneous. [Pg.73]

Figure 3.13 Polymer viscoelastic response as a function of temperature, showing the five regions glassy, glass to rubbery, rubber plateau, rubber flow, and liquid flow... Figure 3.13 Polymer viscoelastic response as a function of temperature, showing the five regions glassy, glass to rubbery, rubber plateau, rubber flow, and liquid flow...
Shaw, M.T. and MacKnight, W.J. 2005. Introduction to Polymer Viscoelasticity. Wiley, Hoboken, NJ. Strobl, G. 2007. The Physics of Polymers. Springer, New York. [Pg.481]

Natural and biomedical polymers Organometallic polymers Inorganic polymers Reactions of polymers Rheology (flow properties, viscoelasticity)... [Pg.690]

Rheological properties of filled polymers can be characterised by the same parameters as any fluid medium, including shear viscosity and its interdependence with applied shear stress and shear rate elongational viscosity under conditions of uniaxial extension and real and imaginary components of a complex dynamic modulus which depend on applied frequency [1]. The presence of fillers in viscoelastic polymers is generally considered to reduce melt elasticity and hence influence dependent phenomena such as die swell [2]. [Pg.157]

Dynamic mechanical experiments yield both the elastic modulus of the material and its mechanical damping, or energy dissipation, characteristics. These properties can be determined as a function of frequency (time) and temperature. Application of the time-temperature equivalence principle [1-3] yields master curves like those in Fig. 23.2. The five regions described in the curve are typical of polymer viscoelastic behavior. [Pg.198]


See other pages where Polymer Viscoelasticity polymers is mentioned: [Pg.136]    [Pg.272]    [Pg.96]    [Pg.150]    [Pg.152]    [Pg.401]    [Pg.76]    [Pg.91]    [Pg.122]    [Pg.203]    [Pg.374]    [Pg.610]    [Pg.185]    [Pg.107]    [Pg.175]    [Pg.2]    [Pg.3]    [Pg.32]    [Pg.358]    [Pg.260]    [Pg.15]    [Pg.18]    [Pg.83]    [Pg.481]    [Pg.34]    [Pg.201]    [Pg.219]    [Pg.635]   
See also in sourсe #XX -- [ Pg.260 , Pg.261 ]




SEARCH



Viscoelastic polymers

Viscoelasticity polymer

© 2024 chempedia.info