Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer films chain orientation

The stretching properties of polymers are investigated by examining the effect of polymer orientation, polymer chain length, stretching rate, and temperature. Homogeneity of polymer films and consistency between lots of polymer films also are investigated. Statistical analysis of data includes Q-tests and f-tests. [Pg.98]

Two approaches to the attainment of the oriented states of polymer solutions and melts can be distinguished. The first one consists in the orientational crystallization of flexible-chain polymers based on the fixation by subsequent crystallization of the chains obtained as a result of melt extension. This procedure ensures the formation of a highly oriented supramolecular structure in the crystallized material. The second approach is based on the use of solutions of rigid-chain polymers in which the transition to the liquid crystalline state occurs, due to a high anisometry of the macromolecules. This state is characterized by high one-dimensional chain orientation and, as a result, by the anisotropy of the main physical properties of the material. Only slight extensions are required to obtain highly oriented films and fibers from such solutions. [Pg.207]

While thin polymer films may be very smooth and homogeneous, the chain conformation may be largely distorted due to the influence of the interfaces. Since the size of the polymer molecules is comparable to the film thickness those effects may play a significant role with ultra-thin polymer films. Several recent theoretical treatments are available [136-144,127,128] based on Monte Carlo [137-141,127, 128], molecular dynamics [142], variable density [143], cooperative motion [144], and bond fluctuation [136] model calculations. The distortion of the chain conformation near the interface, the segment orientation distribution, end distribution etc. are calculated as a function of film thickness and distance from the surface. In the limit of two-dimensional systems chains segregate and specific power laws are predicted [136, 137]. In 2D-blends of polymers a particular microdomain morphology may be expected [139]. Experiments on polymers in this area are presently, however, not available on a molecular level. Indications of order on an... [Pg.385]

Liquid crystalline solutions as such have not yet found any commercial uses, but highly orientated liquid crystal polymer films are used to store information. The liquid crystal melt is held between two conductive glass plates and the side chains are oriented by an electric field to produce a transparent film. The electric field is turned off and the information inscribed on to the film using a laser. The laser has the effect of heating selected areas of the film above the nematic-isotropic transition temperature. These areas thus become isotropic and scatter light when the film is viewed. Such images remain stable below the glass transition temperature of the polymer. [Pg.158]

Sometimes the hazy optical properties of polypropylene are a detriment to its use in thin films. To address this problem, as well as to improve physical properties and reduce material costs, we can orient the molecular chains by stretching the polymer film after it has left the extrusion die. There are two methods of orienting films, film blowing, shown in Fig. 11.6, and tentering, shown in Fig, 19.6. [Pg.310]

The parameters K1/ K2/ and K3 are defined by the refractive indices of the crystal and sample and by the incidence angle [32]. If the sample has uniaxial symmetry, only two polarized spectra are necessary to characterize the orientation. If the optical axis is along the plane of the sample, such as for stretched polymer films, only the two s-polarized spectra are needed to determine kz and kx. These are then used to calculate a dichroic ratio or a P2) value with Equation (25) (replacing absorbance with absorption index). In contrast, a uniaxial sample with its optical axis perpendicular to the crystal surface requires the acquisition of spectra with both p- and s-polarizations, but the Z- and X-axes are now equivalent. This approach was used, through dichroic ratio measurements, to monitor the orientation of polymer chains at various depths during the drying of latex [33]. This type of symmetry is often encountered in non-polymeric samples, for instance, in ultrathin films of lipids or self-assembled monolayers. [Pg.310]

Even at their best, the models are able to predict only macroscopic properties of the films, yielding no information on microscopic parameters that may affect resist performance. It is highly probable that spin casting induces some structure or preferential chain orientation into the films, or causes secondary effects such as the aggregation observed by Law. These effects are barely addressed in the currently available literature. However, some earlier works (3.17-191 on solvent (static) cast films have investigated the molecular orientation of polymer chains as well as chain relaxation due to thermal annealing. [Pg.99]

It is difficult to prepare stretched oriented fibres and such fibres may differ in their polymer chain conformation compared with the unstretched materials. Furthermore the quality of the single crystal X-ray data is poor and difficult to interpret. In contrast power X-ray data of relatively high quality may be obtained from polycrystalline polymer films. Lightfoot, Mehta and Bruce (1992) have obtained the first crystal structure of a polymer-salt complex, PEOjiNaClQ from powder X-ray data. Fig. 5.11(h). The structure is similar to the corresponding PEOjiNal structure, the PEO chains are wrapped around the Na ions with each Na ... [Pg.104]

IR spectroscopy is not only useful for determining the chemical constitution of polymers. It additionally provides profound information on chain orientation and on the orientation of attached lateral substituents of polymers. In this case, polarized IR radiation is applied which is only absorbed by an IR-active bond if the plane in which the electrical field vector E of the IR beam oscillates is parallel to the transition dipole moment p of the vibration to be excited. If, on the other hand, the transition dipole moment p is perpendicular to the electrical field vector E of the IR beam no absorption is observed. Using this effect, the degree of orientation of a polymer sample (film, fiber) can be estimated by comparing the intensity at maximum /(11) and at minimum I ) absorption, i.e., the dichroic ratio. [Pg.84]

Measurement of practical standard value of parallelism degree in the orientation of polymer main chains in an electric-field-oriented film. [Pg.98]

The same authors 369,3701 also obtained similar results if the liquid crystal solvent was aligned by flow during the polymerization. They showed that the polymerization conditions lead to alignment of the fibrils within the polymer mass and of the chains within the fibrils polymers produced in this way could also be doped to a conductivity of 104 S cm-1 371). The morphology of polyacetylene produced by polymerization in a liquid crystal solvent, aligned both magnetically and by flow, has been studied by Montaner et al. 371). They show that the polymer film is made up of very long fibrils built from microfibrils. In one fibril, the orientation of microcrystalline domains with respect to the fibril axis is very well defined, whilst the orientation of the different fibrils in the sample spreads over 20°. [Pg.45]


See other pages where Polymer films chain orientation is mentioned: [Pg.470]    [Pg.699]    [Pg.278]    [Pg.150]    [Pg.183]    [Pg.207]    [Pg.241]    [Pg.450]    [Pg.1110]    [Pg.223]    [Pg.205]    [Pg.211]    [Pg.213]    [Pg.241]    [Pg.96]    [Pg.168]    [Pg.297]    [Pg.306]    [Pg.264]    [Pg.330]    [Pg.461]    [Pg.461]    [Pg.464]    [Pg.478]    [Pg.350]    [Pg.95]    [Pg.96]    [Pg.99]    [Pg.14]    [Pg.39]    [Pg.416]    [Pg.98]    [Pg.148]    [Pg.23]    [Pg.175]    [Pg.339]    [Pg.450]    [Pg.1110]    [Pg.207]    [Pg.241]   


SEARCH



Chain orientation polymers

Films orientation

Orientated chains

Orientation chains

Oriented chain

Oriented films

Oriented polymer chain

© 2024 chempedia.info