Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Melts, liquid crystals

To round out the discussion of the different states of condensed matter, a schematic summary is given in Fig. 1.9. Besides the three classical condensed phases — melt (liquid), crystal and glass (solids) — six mesophases are listed. These mesophases are states of intermediate order between melt or glass and... [Pg.30]

This method is used to locate phase transitions via measurements of the endothennic enthalpy of phase transition. Details of the teclmique are provided elsewhere [25, 58]. Typically, the enthalpy change associated with transitions between liquid crystal phases or from a liquid crystal phase to the isotropic phase is much smaller than the melting enthalpy. Nevertheless, it is possible to locate such transitions with a commercial DSC, since typical enthalpies are... [Pg.2554]

Liquid crystals may be divided into two broad categories, thermotropic and lyotropic, according to the principal means of breaking down the complete order of the soHd state. Thermotropic Hquid crystals result from the melting of mesogenic soHds due to an increase in temperature. Both pure substances and mixtures form thermotropic Hquid crystals. In order for a mixture to be a thermotropic Hquid crystal, the different components must be completely miscible. Table 1 contains a few examples of the many Hquid crystal forming compounds (2). Much more is known about calamitic (rod-Hke) Hquid crystals then discotic (disk-like) Hquid crystals, since the latter were discovered only recendy. Therefore, most of this section deals exclusively with calamities, with brief coverage of discotics at the end. [Pg.190]

Liquid crystal polyesters are made by a different route. Because they are phenoHc esters, they cannot be made by direct ester exchange between a diphenol and a lower dialkyl ester due to unfavorable reactivities. The usual method is the so-called reverse ester exchange or acidolysis reaction (96) where the phenoHc hydroxyl groups are acylated with a lower aHphatic acid anhydride, eg, acetic or propionic anhydride, and the acetate or propionate ester is heated with an aromatic dicarboxyHc acid, sometimes in the presence of a catalyst. The phenoHc polyester forms readily as the volatile lower acid distills from the reaction mixture. Many Hquid crystal polymers are derived formally from hydroxyacids (97,98) and thein acetates readily undergo self-condensation in the melt, stoichiometric balance being automatically obtained. [Pg.295]

Hydrated bilayers containing one or more lipid components are commonly employed as models for biological membranes. These model systems exhibit a multiplicity of structural phases that are not observed in biological membranes. In the state that is analogous to fluid biological membranes, the liquid crystal or La bilayer phase present above the main bilayer phase transition temperature, Ta, the lipid hydrocarbon chains are conforma-tionally disordered and fluid ( melted ), and the lipids diffuse in the plane of the bilayer. At temperatures well below Ta, hydrated bilayers exist in the gel, or Lp, state in which the mostly all-trans chains are collectively tilted and pack in a regular two-dimensional... [Pg.465]

The liquid crystal polymers consist of rod-like molecules which, during shear, tend to orient in the direction of shear. Because of the molecular order the molecules flow past each other with comparative ease and the melts have a low viscosity. When the melt is cooled the molecules retain their orientation, giving self-reinforcing materials that are extremely strong in the direction of orientation. [Pg.53]

As with the polysulphones, the deactivated aromatic nature of the polymer leads to a high degree of oxidative stability, with an indicated UL Temperature Index in excess of 250°C for PEEKK. The only other melt-processable polymers in the same league are poly(phenylene sulphides) and certain liquid crystal polyesters (see Chapter 25). [Pg.604]

In Chapter 3 it was pointed out that certain rod-like polymers showed many of the attributes of liquid crystals in the melt. In particular, these molecules were oriented in shear to such an extent that interchain entanglement was small and the melts had a low viscosity. On cooling of the melt these rod-like molecules remained oriented, effectively self-reinforcing the polymer in the direction of flow. The essential differences in the properties of liquid crystal polymers... [Pg.733]

Figure 25.24. Difference in behaviour between liquid crystal polymers and conventional crystalline polymers in the melt at rest, during shear and when cooled after shearing... Figure 25.24. Difference in behaviour between liquid crystal polymers and conventional crystalline polymers in the melt at rest, during shear and when cooled after shearing...
Martin [25] has also shown that ammonium salts display similar behavior. [Cetyltrimethylammonium]2[ZnCl4], for example, first melts to an Sc-type liquid crystal at 70 °C and then to an S -type mesophase at 160 °C. The broad diffraction features observed in the liquid-crystalline phases are similar to those seen in the original crystal phase and show the retention on melting of some of the order originating from the initial crystal, as shown in Figure 4.1-6. [Pg.136]

A result different from that of Nakafuku et al. [144-147] was obtained by us from the study of a binary mixture of PE-ethyl cellulose liquid crystal under high pressure. We have reported [104,117] that addition of 1% ethyl cellulose by weight facilitates the formation of ECC of PE and moderates the conditions for the formation of ECC, that is, the pressure limit is lowered from 440 MPa to 150-200 MPa, and the temperature limit lowered from 200-245°C to 170°C. The DSC melting curves at atmospheric pressure for pure PE (Mt, = 1.06 x 10, p = 0.9556 g/cm ) and PE-ethyl cellulose mixture crystallized at various pressures are shown in Figs. 20 and... [Pg.313]


See other pages where Melts, liquid crystals is mentioned: [Pg.1509]    [Pg.1220]    [Pg.143]    [Pg.232]    [Pg.1509]    [Pg.172]    [Pg.165]    [Pg.744]    [Pg.29]    [Pg.298]    [Pg.1509]    [Pg.1220]    [Pg.143]    [Pg.232]    [Pg.1509]    [Pg.172]    [Pg.165]    [Pg.744]    [Pg.29]    [Pg.298]    [Pg.35]    [Pg.245]    [Pg.2268]    [Pg.2543]    [Pg.2554]    [Pg.204]    [Pg.188]    [Pg.293]    [Pg.306]    [Pg.535]    [Pg.191]    [Pg.53]    [Pg.53]    [Pg.737]    [Pg.296]    [Pg.55]    [Pg.51]    [Pg.135]    [Pg.298]    [Pg.300]    [Pg.301]    [Pg.314]    [Pg.323]    [Pg.306]   
See also in sourсe #XX -- [ Pg.2 , Pg.299 , Pg.300 ]

See also in sourсe #XX -- [ Pg.2 , Pg.299 , Pg.300 ]




SEARCH



Crystal melting

Liquid crystals Melting

Liquid crystals solids/melts

Liquid melts

Melt crystallization

Melting point liquid crystals

© 2024 chempedia.info