Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer film redox reactions

A compound which is a good choice for an artificial electron relay is one which can reach the reduced FADH2 active site, undergo fast electron transfer, and then transport the electrons to the electrodes as rapidly as possible. Electron-transport rate studies have been done for an enzyme electrode for glucose (G) using interdigitated array electrodes (41). The following mechanism for redox reactions in osmium polymer—GOD biosensor films has... [Pg.45]

Friedrich et al. also used XPS to investigate the mechanisms responsible for adhesion between evaporated metal films and polymer substrates [28]. They suggested that the products formed at the metal/polymer interface were determined by redox reactions occurring between the metal and polymer. In particular, it was shown that carbonyl groups in polymers could react with chromium. Thus, a layer of chromium that was 0.4 nm in thickness decreased the carbonyl content on the surface of polyethylene terephthalate (PET) or polymethylmethacrylate (PMMA) by about 8% but decreased the carbonyl content on the surface of polycarbonate (PC) by 77%. The C(ls) and 0(ls) spectra of PC before and after evaporation of chromium onto the surface are shown in Fig. 22. Before evaporation of chromium, the C(ls) spectra consisted of two components near 284.6 eV that were assigned to carbon atoms in the benzene rings and in the methyl groups. Two additional... [Pg.273]

The stoichiometry of the redox reactions of conducting polymers (n and m in reactions 1 and 2) is quite variable. Under the most widely used conditions, polypyrroles and polythiophenes can be reversibly oxidized to a level of one hole per ca. 3 monomer units (i.e., a degree of oxidation, n, of ca. 0.3).7 However, this limit is dictated by the stability of the oxidized film under the conditions employed (Section V). With particularly dry and unreactive solvents, degrees of oxidation of 0.5 can be reversibly attained,37 and for poly-(4,4 -dimethoxybithiophene), a value of n = 1 has been reported.38 Although much fewer data are available for n-doping, it appears to involve similar stoichiometries [i.e., m in Eq. (2) is typically ca. 0.3].34,39"41 Polyanilines can in principle be reversibly p-doped to one... [Pg.553]

On the other hand, Doblhofer218 has pointed out that since conducting polymer films are solvated and contain mobile ions, the potential drop occurs primarily at the metal/polymer interface. As with a redox polymer, electrons move across the film because of concentration gradients of oxidized and reduced sites, and redox processes involving solution species occur as bimolecular reactions with polymer redox sites at the polymer/solution interface. This model was found to be consistent with data for the reduction and oxidation of a variety of species at poly(7V-methylpyrrole). This polymer has a relatively low maximum conductivity (10-6 - 10 5 S cm"1) and was only partially oxidized in the mediation experiments, which may explain why it behaved more like a redox polymer than a typical conducting polymer. [Pg.587]

A discussion of the charge transfer reaction on the polymer-modified electrode should consider not only the interaction of the mediator with the electrode and a solution species (as with chemically modified electrodes), but also the transport processes across the film. Let us assume that a solution species S reacts with the mediator Red/Ox couple as depicted in Fig. 5.32. Besides the simple charge transfer reaction with the mediator at the interface film/solution, we have also to include diffusion of species S in the polymer film (the diffusion coefficient DSp, which is usually much lower than in solution), and also charge propagation via immobilized redox centres in the film. This can formally be described by a diffusion coefficient Dp which is dependent on the concentration of the redox sites and their mutual distance (cf. Eq. (2.6.33). [Pg.332]

In the area of ion sensing, cation recognition by electrodes containing functionalized redox-active polymers has been an area of considerable interest. Fabre and co-workers have reported the development of a boronate-functionalized polypyrrole as a fluoride anion-responsive electroactive polymer film. The electropolymerizable polypyrrole precursor (11) (Fig. 11) was synthesized by the hydroboration reaction of l-(phenylsulfonyl)-3-vinylpyrrole with diisopinocampheylborane followed by treatment with pinacol and the deprotection of the pyrrole ring.33 The same methodology was utilized for the production of several electropolymerizable aromatic compounds (of pyrrole (12) (Fig. 11), thiophene (13 and 14) (Fig. 11), and aniline) bearing boronic acid and boronate substituents as precursors of fluoride- and/or chloride-responsive conjugated polymer.34... [Pg.27]

Several approaches have been undertaken to construct redox active polymermodified electrodes containing such rhodium complexes as mediators. Beley [70] and Cosnier [71] used the electropolymerization of pyrrole-linked rhodium complexes for their fixation at the electrode surface. An effective system for the formation of 1,4-NADH from NAD+ applied a poly-Rh(terpy-py)2 + (terpy = terpyridine py = pyrrole) modified reticulated vitreous carbon electrode [70]. In the presence of liver alcohol dehydrogenase as production enzyme, cyclohexanone was transformed to cyclohexanol with a turnover number of 113 in 31 h. However, the current efficiency was rather small. The films which are obtained by electropolymerization of the pyrrole-linked rhodium complexes do not swell. Therefore, the reaction between the substrate, for example NAD+, and the reduced redox catalyst mostly takes place at the film/solution interface. To obtain a water-swellable film, which allows the easy penetration of the substrate into the film and thus renders the reaction layer larger, we used a different approach. Water-soluble copolymers of substituted vinylbipyridine rhodium complexes with N-vinylpyrrolidone, like 11 and 12, were synthesized chemically and then fixed to the surface of a graphite electrode by /-irradiation. The polymer films obtained swell very well in aqueous... [Pg.112]

For more complex mechanisms, picturesque names such as square, ladder, fence [18] or cubic schemes [20] have been selected. In redox polymer films, additional transport of counterions, solvation, and polymer reconfiguration are important and four-dimensional hyper-cubes are needed to describe the reactions [21]. [Pg.6]

Technically important electrochemical reactions of pyrrole and thiophene involve oxidation in non-nucleophilic solvents when the radical-cation intermediates react with the neutral molecule causing polymer growth [169, 191], Under controlled conditions polymer films can be grown on the anode surface from acetonitrile. Tliese films exhibit redox properties and in the oxidised, or cation doped state, are electrically conducting. They can form the positive pole of a rechargeable battery system. Pyrroles with N-substituents are also polymerizable to form coherent films [192], Films have been constructed to support electroactive transition metal centres adjacent to the electrode surface fomiing a modified electrode,... [Pg.224]

Electron hopping is not the only mechanism by which a multilayer film containing an electroactive species can be electrochemically oxidized or reduced. Consider an electrode surface that has been coated with a film of the cation-exchange polymer Nafion (Table 13.2). Let us assume that the electroactive cation Fe3+ has been ion-exchanged into this Nafion film (e.g., Eq. 13.4). In principle, the Fe3+ in this film can be reduced via the following redox reaction ... [Pg.418]

Research into chemically modified electrodes has led to a number of new ways to build chemical selectivity into films that can be coated onto electrode surfaces. Perhaps the simplest example is the use of the polymer Nafion (see Table 13.2) to make selective electrodes for basic research in neurophysiology [88]. Starting with the pioneering investigations by Ralph Adams, electrochemists have become interested in the electrochemical detection of a class of amine-based neurotransmitters in living organisms. The quintessential example of this class of neurotransmitters is the molecule dopamine, which can be electrochemically oxidized via the following redox reaction ... [Pg.433]

In most polymer films, the electroactivity of the redox centers depends on the ionic conductivity of the film. This is usually achieved either by the penetration of supporting electrolyte ions through pores in the film or by the presence in the film of numerous fixed charge sites plus mobile counterions. In many cases, solvent permeation into the polymer facilitates ionic penetration and mobility. If the polymer film possesses electronic, rather than ionic, conductivity, the electron-transfer reactions will most likely occur at the polymer/solution interface and the advantage of a three-dimensional reaction zone will be reduced. [Pg.249]

Most of the redox centers in a polymer film cannot rapidly come into direct contact with the electrode surface. The widely accepted mechanism proposed for electron transport is one in which the electroactive sites become oxidized or reduced by a succession of electron-transfer self-exchange reactions between neighboring redox sites [22]. However, control of the overall rate is a more complex problem. To maintain electroneutrality within the film, a flow of counterions and associated solvent is necessary during electron transport. There is also motion of the polymer chains and the attached redox centers which provides an additional diffusive process for transport. The rate-determining step in the electron site-site hopping is still in question and is likely to be different in different materials. [Pg.249]

We describe here that the redox oligomer wires fabricated with the stepwise coordination method show characteristic electron transport behavior distinct from conventional redox polymers. Redox polymers are representative electron-conducting substances in which redox species are connected to form a polymer wire.21-25 The electron transport was treated according to the concept of redox conduction, based on the dilfusional motion of collective electron transfer pathways, composed of electron hopping terms and/or physical diffusion.17,18,26-30 In the characterization of redox conduction, the Cottrell equation can be applied to the initial current—time curve after the potential step in potential step chronoamperometry (PSCA), which causes the redox reaction of the redox polymer film ... [Pg.395]

Poly acetylene can be doped with large anions of H3PM012O40. The doping increases not only the conductivity of the polymer but also the catalytic activity. The HPA is distributed nearly uniformly over the cross-section of the polymer film. For the conversion of ethanol, the catalyst exhibits acid-base activity as well as redox activity. Through the pulse reaction, it has been shown that the rate of formation of ethylene and diethyl ether increased 10 times and the rate of formation of acetaldehyde increased 40 times [98]. [Pg.91]


See other pages where Polymer film redox reactions is mentioned: [Pg.681]    [Pg.681]    [Pg.681]    [Pg.681]    [Pg.22]    [Pg.22]    [Pg.6167]    [Pg.144]    [Pg.103]    [Pg.2409]    [Pg.416]    [Pg.69]    [Pg.77]    [Pg.152]    [Pg.213]    [Pg.444]    [Pg.451]    [Pg.320]    [Pg.46]    [Pg.49]    [Pg.588]    [Pg.594]    [Pg.282]    [Pg.409]    [Pg.102]    [Pg.172]    [Pg.539]    [Pg.147]    [Pg.248]    [Pg.250]    [Pg.401]    [Pg.76]    [Pg.126]    [Pg.131]    [Pg.314]    [Pg.458]    [Pg.574]    [Pg.397]   
See also in sourсe #XX -- [ Pg.208 , Pg.606 , Pg.607 , Pg.610 , Pg.612 ]




SEARCH



Redox polymer

© 2024 chempedia.info