Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer electrolytes properties

Depending on the fuel, H2, MeOH (gas or liquid), or other, the solid polymer electrolyte properties have to be tailored, in particular for their properties towards separation of fuel and oxidant. [Pg.1657]

Figure 10.3 The four main processes leading to a volume change and actuation in ICPs, with the main polymer/electrolyte properties illustrated. Figure 10.3 The four main processes leading to a volume change and actuation in ICPs, with the main polymer/electrolyte properties illustrated.
Key words polymer electrolyte classes, polymer electrolyte properties, batteries, fuel cells and capacitors, photoelectro chemical devices, electrochromic applications. [Pg.3]

The successfiil synthesis of a transparent soHd polymer electrolyte (SPE) based on PEO and alkoxysilanes has been reported (41). The material possessed good mechanical properties and high electrical conductivity (around 1.8 x 10 S/cm at 25°C) dependent on the organic—inorganic ratio and PEO chain length. [Pg.329]

Step 4 deals with physical and chemical properties of compounds and mixtures. Accurate physical and chemical properties ate essential to achieve accurate simulation results. Most simulators have a method of maintaining tables of these properties as well as computet routines for calculations for the properties by different methods. At times these features of simulators make them suitable or not suitable for a particular problem. The various simulators differ ia the number of compounds ia the data base number of methods for estimating unknown properties petroleum fractions characterized electrolyte properties handled biochemical materials present abiUty to handle polymers and other complex materials and the soflds, metals, and alloys handled. [Pg.73]

Ren, X. Springer, T. E. and Gottesfeld, S. (1998). Direct Methanol Fuel Cell Transport Properties of the Polymer Electrolyte Membrane and Cell Performance. Vol. 98-27. Proc. 2nd International Symposium on Proton Conducting Membrane Euel Cells. Pennington, NJ Electrochemical Society. [Pg.644]

It is now well established that in lithium batteries (including lithium-ion batteries) containing either liquid or polymer electrolytes, the anode is always covered by a passivating layer called the SEI. However, the chemical and electrochemical formation reactions and properties of this layer are as yet not well understood. In this section we discuss the electrode surface and SEI characterizations, film formation reactions (chemical and electrochemical), and other phenomena taking place at the lithium or lithium-alloy anode, and at the Li. C6 anode/electrolyte interface in both liquid and polymer-electrolyte batteries. We focus on the lithium anode but the theoretical considerations are common to all alkali-metal anodes. We address also the initial electrochemical formation steps of the SEI, the role of the solvated-electron rate constant in the selection of SEI-building materials (precursors), and the correlation between SEI properties and battery quality and performance. [Pg.420]

PEO is found to be an ideal solvent for alkali-metal, alkaline-earth metal, transition-metal, lanthanide, and rare-earth metal cations. Its solvating properties parallel those of water, since water and ethers have very similar donicites and polarizabilities. Unlike water, ethers are unable to solvate the anion, which consequently plays an important role in polyether polymer-electrolyte formation. [Pg.502]

We have already referred to the Mo/Ru/S Chevrel phases and related catalysts which have long been under investigation for their oxygen reduction properties. Reeve et al. [19] evaluated the methanol tolerance, along with oxygen reduction activity, of a range of transition metal sulfide electrocatalysts, in a liquid-feed solid-polymer-electrolyte DMFC. The catalysts were prepared in high surface area by direct synthesis onto various surface-functionalized carbon blacks. The intrinsic... [Pg.319]

In polymer electrolytes (even prevailingly crystalline), most of ions are transported via the mobile amorphous regions. The ion conduction should therefore be related to viscoelastic properties of the polymeric host and described by models analogous to that for ion transport in liquids. These include either the free volume model or the configurational entropy model . The former is based on the assumption that thermal fluctuations of the polymer skeleton open occasionally free volumes into which the ionic (or other) species can migrate. For classical liquid electrolytes, the free volume per molecule, vf, is defined as ... [Pg.140]

Ion-conductive properties of anion-trapping-type organoboron polymer electrolytes was evaluated after adding lithium salts (Fig. 3). In these systems, ionic conductivity of 3.05 X 10 s 5.22 X 10 6Scm 1 was observed at 50°C. This indicates... [Pg.195]

A variety of organoboron polymer electrolytes were successfully prepared by hydroboration polymerization or dehydrocoupling polymerization. Investigations of the ion conductive properties of these polymers are summarized in Table 7. From this systematic study using defined organoboron polymers, it was clearly demonstrated that incorporation of organoboron anion receptors or lithium borate structures are fruitful approaches to improve the lithium transference number of an ion conductive matrix. [Pg.210]

Table 1 Ion-Conductive Properties of Organoboron Polymer Electrolytes ... Table 1 Ion-Conductive Properties of Organoboron Polymer Electrolytes ...
A new electrofluorescent switch was prepared with an electroactive fluorescent tetrazine blend of polymer electrolyte <06CC3612>. The structure and magnetic properties of the stable oxoverdazyl free radical 6-(4-acetamidophenyl)-1,4,5,6-tetrahydro-2,4-dimethyl-... [Pg.420]

Carbon is unique among chemical elements since it exists in different forms and microtextures transforming it into a very attractive material that is widely used in a broad range of electrochemical applications. Carbon exists in various allotropic forms due to its valency, with the most well-known being carbon black, diamond, fullerenes, graphene and carbon nanotubes. This review is divided into four sections. In the first two sections the structure, electronic and electrochemical properties of carbon are presented along with their applications. The last two sections deal with the use of carbon in polymer electrolyte fuel cells (PEFCs) as catalyst support and oxygen reduction reaction (ORR) electrocatalyst. [Pg.357]

Cho, Y. H., Yoo, S. J., Cho, Y. H., Park, H. S., Park, I. S., Lee, J. K., and Sung, Y. E. Enhanced performance and improved interfacial properties of polymer electrolyte membrane fuel cells fabricated using sputter-deposited Pt thin layers. Electrochimica Acta 2008 53 6111-6116. [Pg.102]

Sakai, T., Takenaka, H., Wakabayashi, N., Kawami, Y. and Torikai, E. 1985. Gas permeation properties of solid polymer electrolyte (SPE) membranes. Journal of... [Pg.172]

Bauer, F., Denneler, S. and Wilert-Porada, M. 2005. Influence of temperature and humidity on the mechanical properties of Nafion 117 polymer electrolyte membrane. Journal of Polymer Science Part B Polymer Physics 43 786-795. [Pg.175]

Patri, M., Hande, V. R., Phadnis, S. and Deb, P. C. 2004. Radiation-grafted solid polymer electrolyte membrane thermal and mechanical properties of sulfonated fluormated ethylene propylene copolymer (FEP)-graft-acrylic acid membranes. Polymers for Advanced Technologies 15 622-627. [Pg.175]

D. Bevers, R. Rogers, and M. von Bradke. Examination of the influence of PTFE coating on the properties of carbon paper in polymer electrolyte fuel cells. Journal of Power Sources 63 (1996) 193-201. [Pg.293]

Physical models of fuel cell operation contribute to the development of diagnoshc methods, the rational design of advanced materials, and the systematic ophmization of performance. The grand challenge is to understand relations of primary chemical structure of materials, composition of heterogeneous media, effective material properties, and performance. For polymer electrolyte membranes, the primary chemical structure refers to ionomer molecules, and the composition-dependent phenomena are mainly determined by the uptake and distribuhon of water. [Pg.420]

However, because measurements are kinetically determined, this is a less accurate form of the equation. Very often it is observed that the measured shift factors, defined for different properties, are independent of the measured property. In addition, if for every polymer system, a different reference temperature is chosen, and ap is expressed as a function of T — rj, then ap turns out to be nearly universal for all polymers. Williams, Landel and Ferry believed that the universality of the shift factor was due to a dependence of relaxation rates on free volume. Although the relationship has no free volume basis, the constants and may be given significance in terms of free volume theory (Ratner, 1987). Measurements of shift factors have been carried out on crosslinked polymer electrolyte networks by measuring mechanical loss tangents (Cheradame and Le Nest, 1987). Fig. 6.3 shows values of log ap for... [Pg.130]

Here Tq is — C2 and is a prefactor proportional to which is determined by the transport coefficient (in this case at the given reference temperature. The constant B has the dimensions of energy but is not related to any simple activation process (Ratner, 1987). Eqn (6.6) holds for many transport properties and, by making the assumption of a fully dissociated electrolyte, it can be related to the diffusion coefficient through the Stokes-Einstein equation giving the form to which the conductivity, <7, in polymer electrolytes is often fitted,... [Pg.132]


See other pages where Polymer electrolytes properties is mentioned: [Pg.105]    [Pg.105]    [Pg.577]    [Pg.427]    [Pg.450]    [Pg.504]    [Pg.512]    [Pg.513]    [Pg.518]    [Pg.558]    [Pg.607]    [Pg.78]    [Pg.637]    [Pg.332]    [Pg.117]    [Pg.193]    [Pg.101]    [Pg.96]    [Pg.150]    [Pg.150]    [Pg.357]    [Pg.18]    [Pg.352]    [Pg.95]    [Pg.135]    [Pg.139]   
See also in sourсe #XX -- [ Pg.508 ]




SEARCH



Ceramic polymer electrolytes properties

Composite solid polymer electrolyte properties

Electrolyte properties

Electrolytic properties

Main properties of polymer electrolytes

Polymer electrolyte fuel cell dynamic properties

Polymer electrolyte membrane properties

Polymer-electrolyte complexes conducting properties

Polymer-electrolyte complexes mechanical properties

Polymer-electrolyte complexes thermal properties

Proton conducting polymer electrolytes properties

Solid Polymer Electrolyte electrochemical properties

© 2024 chempedia.info