Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer brushes polymerization

Riihe J (2001) Polymer brushes polymerization to control interfacial properties. In Encyclopedia of materials science and technology. Elsevier, The Netherlands, pp 7213— 7218... [Pg.147]

Hollow capsules can be prepared using polymer brushes polymerized from particulate hard templates. The formation of polymer brushes proceeds via chain... [Pg.375]

Graft copolymers made by living polymerization processes are often called polymer brushes because of the uniformity in graft length that is possible. The basic approaches to graft copolymers also have some analogies with those used in making block and star copolymers. [Pg.558]

There have been several studies on the use of RAFT to form polymer brushes by polymerization or copolymerization of macromonomers 348-350. [Pg.559]

The preparation of polymer brushes by controlled radical polymerization from appropriately functionalized polymer chains, surfaces or particles by a grafting from approach has recently attracted a lot of attention.742 743 The advantages of growing a polymer brush directly on a surface include well-defined grafts, when the polymerization kinetics exhibit living character, and stability due to covalent attachment of the polymer chains to the surface. Most work has used ATRP or NMP, though papers on the use of RAFT polymerization in this context also have begun to appear. [Pg.560]

Highly branched polymers, polymer adsorption and the mesophases of block copolymers may seem weakly connected subjects. However, in this review we bring out some important common features related to the tethering experienced by the polymer chains in all of these structures. Tethered polymer chains, in our parlance, are chains attached to a point, a line, a surface or an interface by their ends. In this view, one may think of the arms of a star polymer as chains tethered to a point [1], or of polymerized macromonomers as chains tethered to a line [2-4]. Adsorption or grafting of end-functionalized polymers to a surface exemplifies a tethered surface layer [5] (a polymer brush ), whereas block copolymers straddling phase boundaries give rise to chains tethered to an interface [6],... [Pg.33]

Pyun, J., Kowalewski, T. and Matyjaszewski, K. (2003) Synthesis of polymer brushes using atom transfer radical polymerization. Macromol. Rapid Commun., 24, 1043-1059. [Pg.69]

Tsujii, Y, Ohno, K., Yamamoto, S., Goto, A. and Fukuda, T. (2006) Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv. Polym. Sci., 197, 1-45. [Pg.69]

Qin, S., et al., Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization ofn-butyl methacrylate. Journal of the American Chemical Society, 2003. 126(1) p. 170-176. [Pg.162]

Wang, D., et al., Graphene functionalized with azo polymer brushes Surface-initiated polymerization andphotoresponsiveproperties. Advanced Materials, 2011. 23(9) p. 1122-1125. [Pg.162]

The use of polymeric coatings in catalysis is mainly restricted to the physical and sometimes chemical immobilization of molecular catalysts into the bulk polymer [166, 167]. The catalytic efficiency is often impaired by the local reorganization of polymer attached catalytic sites or the swelling/shrinking of the entire polymer matrix. This results in problems of restricted mass transport and consequently low efficiency of the polymer-supported catalysts. An alternative could be a defined polymer coating on a solid substrate with equally accessible catalytic sites attached to the polymer (side chain) and uniform behavior of the polymer layer upon changes in the environment, such as polymer brushes. [Pg.399]

Fig. 9.19 Preparation of polymer brushes on solid surfaces by a) chemical grafting of end-functionalized linear polymers or selective adsorption of asymmetric block copolymers and b) by surface-initiated polymerization (SIP) using initiator functions on the solid surface. The depicted SAM bearing to-functionalities... Fig. 9.19 Preparation of polymer brushes on solid surfaces by a) chemical grafting of end-functionalized linear polymers or selective adsorption of asymmetric block copolymers and b) by surface-initiated polymerization (SIP) using initiator functions on the solid surface. The depicted SAM bearing to-functionalities...
In this method, a reactive group on the surface initiates the polymerization, and the propagating polymer chain grows from the surface (Fig. 9.19b). In principle, it can be employed with all polymerization types, and a number of papers have reported high amounts of immobihzed polymer using surface-initiated polymerization with various initiator/monomer systems. If controlled or Hving polymerization techniques are used, block copolymer or end-functionahzed polymer brush systems can be prepared in consecutive reaction steps (Fig. 9.19c). [Pg.401]

Laterally-defined heterogeneous polymer surfaces can be created by using a homogeneous layer of an azo initiator. UV irradiation through a mask in the presence of monomer leads to the locally confined photopolymerization [234]. A second polymerization using the remaining initiators results in patterned surfaces composed of two types of polymer brushes [238]. However, the lateral resolution of obtainable patterns is hmited by the irradiation used and type of mask (in this case polymer brush patterns of 260 tm spaced by -40 pm were formed). [Pg.408]

Till now, only three reports on the preparation of polymer brushes by means of surface-initiated anionic polymerization on planar substrates with accounts on the morphology and special properties can be found. [Pg.414]

While in most of the reports on SIP free radical polymerization is utihzed, the restricted synthetic possibihties and lack of control of the polymerization in terms of the achievable variation of the polymer brush architecture limited its use. The alternatives for the preparation of weU-defined brush systems were hving ionic polymerizations. Recently, controlled radical polymerization techniques has been developed and almost immediately apphed in SIP to prepare stracturally weU-de-fined brush systems. This includes living radical polymerization using nitroxide species such as 2,2,6,6-tetramethyl-4-piperidin-l-oxyl (TEMPO) [285], reversible addition fragmentation chain transfer (RAFT) polymerization mainly utilizing dithio-carbamates as iniferters (iniferter describes a molecule that functions as an initiator, chain transfer agent and terminator during polymerization) [286], as well as atom transfer radical polymerization (ATRP) were the free radical is formed by a reversible reduction-oxidation process of added metal complexes [287]. All techniques rely on the principle to drastically reduce the number of free radicals by the formation of a dormant species in equilibrium to an active free radical. By this the characteristic side reactions of free radicals are effectively suppressed. [Pg.423]

In a series of papers, Matsuda et al. [291-295] employed RAFT-SIP with immobilized benzyl N,N-diethyldithiocarbamate to form polymer brushes from styrene, methacrylamides, acrylamides and acrylates, NIPAM and N-vinyl-2-pyrrolidone on various surfaces. The SIP is initiated by UV irradiation of the surface-bonded dithiocarbamates. Thermoresponsive polymer brushes were prepared by the polymerization of NIPAM and investigated by XPS, wetting experiments and mainly SPM [294]. Patterned polymer brush layers were also prepared. When chloro-methyl styrene was used as a comonomer, RAFT-SIP resulted in branching. By control of the branching, spatio-resolved hyperbranching of a controllable stem/ branch design was realized (Fig. 9.32) [293, 295]. [Pg.423]

The same aplies to polymer brushes. The use of SAMs as initiator systems for surface-initiated polymerization results in defined polymer brushes of known composition and morphology. The different polymerization techniques, from free radical to living ionic polymerizations and especially the recently developed controlled radical polymerization allows reproducible synthesis of strictly linear, hy-perbranched, dentritic or cross-linked polymer layer structures on solids. The added flexibility and functionality results in robust grafted supports with higher capacity and improved accessibility of surface functions. The collective and fast response of such layers could be used for the design of polymer-bonded catalytic systems with controllable activity. [Pg.434]

Abstract This article reviews results from our group of the synthesis and characterization of diblock copolymer brushes. Results from the literature are also covered. We report a wide variety of diblock compositions and compare the miscibility of the two blocks with the tendency to rearrange in response to block-selective solvents. Also, we describe the types of polymerization methods that can be utilized to prepare diblock copolymer brushes. We have compared the molecular weight of free polymer and the polymer brush based on results from our laboratory and other research groups we have concluded that the molecular weight of the free polymer and that of degrafted polymer brushes is similar. [Pg.125]

In summary, upon review of results from our own laboratories combined with literature results, it is now possible to make reasonable conclusions about the molecular weight and dispersity of polymer brushes. First, it seems that/ for living polymerizations approximates 0.10. Second, there is good correspondence between the M and PDI of free polymer and degrafted polymer. [Pg.137]

Advincula R. Polymer Brushes by Anionic and Cationic Surface-Initiated Polymerization (SIP). Vol. 197, pp. 107-136. [Pg.185]


See other pages where Polymer brushes polymerization is mentioned: [Pg.282]    [Pg.282]    [Pg.591]    [Pg.58]    [Pg.28]    [Pg.61]    [Pg.63]    [Pg.264]    [Pg.400]    [Pg.407]    [Pg.408]    [Pg.411]    [Pg.413]    [Pg.423]    [Pg.428]    [Pg.432]    [Pg.78]    [Pg.87]    [Pg.89]    [Pg.105]    [Pg.117]    [Pg.126]    [Pg.127]    [Pg.135]    [Pg.136]    [Pg.170]   
See also in sourсe #XX -- [ Pg.2 , Pg.5 , Pg.15 ]




SEARCH



Polymer brushes

Polymeric brushes

© 2024 chempedia.info