Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Macromonomers polymerizations

The high temperature polymerization of acrylates with the backbiting-fragmentation process has been used to synthesize macromonomers based on acrylate esters. 277,312 Interestingly, fragmentation shows a strong preference for giving the polymeric macromonomer 64 and a small radical 65. 276.277 An explanation for this specificity has yet to be proposed. [Pg.212]

Highly branched polymers, polymer adsorption and the mesophases of block copolymers may seem weakly connected subjects. However, in this review we bring out some important common features related to the tethering experienced by the polymer chains in all of these structures. Tethered polymer chains, in our parlance, are chains attached to a point, a line, a surface or an interface by their ends. In this view, one may think of the arms of a star polymer as chains tethered to a point [1], or of polymerized macromonomers as chains tethered to a line [2-4]. Adsorption or grafting of end-functionalized polymers to a surface exemplifies a tethered surface layer [5] (a polymer brush ), whereas block copolymers straddling phase boundaries give rise to chains tethered to an interface [6],... [Pg.33]

A macromonomer is a macromolecule with a reactive end group that can be homopolymerized or copolymerized with a small monomer by cationic, anionic, free-radical, or coordination polymerization (macromonomers for step-growth polymerization will not be considered here). The resulting species may be a star-like polymer (homopolymerization of the macromonomer), a comblike polymer (copolymerization with the same monomer), or a graft polymer (copolymerization with a different monomer) in which the branches are the macromonomer chains. [Pg.48]

Polymerization of macromonomers by cationic ring-opening polymerization Macromonomer has been prepared from 2-(p-hydroxyphenyl)-2-oxazoline and ethylene oxide using n-butyl lithium to initiate the anionic polymerization of EO 16I). The living chains were terminated with CH3I or H20 yielding macromonomers with Mn = 1,010 and M = 1,930, respectively ... [Pg.294]

The ability of anionic polymerization to polymerize macromonomers has been demonstrated. co-(Methacryloyloxy)-PS macromonomers could be homopolymerized anionically to high yield using diphenylmethyl potassium as an initiator. Similar results could be obtained for co-styryl-PS macro monomers. These cylindrical bmsh species served as models for physicochemical studies. The major difficulty of this reaction... [Pg.534]

An important class of PPEs carry further polymers on their side chains. There are two different strategies to make such polymers (Charts 8.15 and 8.16). One can first prepare a prepolymer such as 40 by treating 38 with caprolactone (39) in the presence of a tin catalyst and then polymerize macromonomer 40 by Pd catalysis in the presence of acetylene into 41 obtained as fluorescent material with a high degree of polymerization. [Pg.187]

Several macrointermediates to obtain this kind of copolymer were used via free radical, ionic, and/or free radical-ionic coupling polymerization. In this manner, macroinitiators, macromonomers, and macromono-meric initiators will be discussed in this chapter. [Pg.726]

The cationic ring opening polymerization of oxolane (THF) or of N-substituted aziridines can be initiated by oxocarbenium salts [42]. The methacrylic ester unsaturation is insensitive to cationic sites, and polyoxolanes (poly-THF) macromonomers are obtained in good yields. [Pg.729]

Radical polymerizations of macromonomers are greatly influenced by the diffusion control effect [44]. Segmental diffusivity and translational diffusivity of the growing chains of macromonomers are strongly affected by the feed concentration and the molecular weight of the macromonomers. Furthermore, there is little difference in the degree of polymerization between macro-... [Pg.729]

Macromonomers always lead to the formation of graft copolymers. For example, the vinyl-terminated polystyrene can be copolymerized with ethylene to produce a graft copolymer of polyethylene, whereby the vinyl moiety of polystyrene is integrally polymerized into the linear polyethylene backbone ... [Pg.732]

Transfer constants of the methacrylate macromonomers in MMA polymerization do not depend on the ester group but are slightly higher for MAA trimer. Compounds 72 and 73 are derived from the MMA trimer (67) by selective hydrolysis or hydrolysis and reesterification respectively. They offer a route to telechelic polymers. [Pg.306]

In the case of polymerization of monosubstituted monomers S, RA) with 66-68, copolymerization of the macromonomer to form a graft copolymer is a significant side reaction.76... [Pg.307]

Macromonomers such as 66, 68 and 94 are themselves catalytic chain transfer agents (Section 6.2.3.4) and transfer to macromonomer is one mechanism for chain extension of the initially formed species. The adduct species in the case of monomeric radical adding dimer (100) may also react by chain transfer to give 101 which is inert under polymerization conditions (Scheme 6.25). Polymerizations to... [Pg.312]

There is a considerable body of evidence (kinetic studies, chemical and NMR analysis) indicating that transfer to VAc monomer involves largely, if not exclusively, the acetate methyl hydrogen to give radical 111 (Scheme 6.29).171,172 This radical (111) initiates polymerization to yield a reactive macromonomer (112). [Pg.318]

In polymerization of methacrylates, the adducts formed by addition to the macromonomer radicals are relatively unreactive towards adding further monomer... [Pg.321]

Copolymerization of macromonomers formed by backbiting and fragmentation is a second mechanism for long chain branch formation during acrylate polymerization (Section 4.4.3.3). The extents of long and short chain branching in acrylate polymers in emulsion polymerization as a function of conditions have been quantified.20 ... [Pg.322]

The reactivity of macromonomers in copolymerizalion is strongly dependent on the particular comonomer-macromonomer pair. Solvent effects and the viscosity of the polymerization medium can also be important. Propagation may become diffusion controlled such that the propagation rate constant and reactivity ratios depend on the molecular weight of the macromonomer and the viscosity or, more accurately, the free volume of the medium. [Pg.401]

As in the case of PS (Section 8.2.1) polymers formed by living radical polymerization (NMP, ATRP, RAFT) have thermally unstable labile chain ends. Although PMMA can be prepared by NMP, it is made difficult by the incidence of cross disproportionation.42 Thermal elimination, possibly by a homolysis-cross disproportionation mechanism, provides a route to narrow polydispersity macromonomers.43 Chemistries for end group replacement have been devised in the case of polymers formed by NMP (Section 9.3.6), ATRP (Section 9.4) and RAFT (Section 9.5.3). [Pg.420]

The heterogeneity of the reaction medium is also important in determining the molecular weight and in solution polymerization of maeromonomers. The magnitude of the effect varies according to the solvent quality. PS macromonomer chains in good solvents (e.g. toluene) have au extended conformation whereas in poor solvents (e.g. melhylcyclohexane) chains are tightly coiled.89 As a consequence, the radical center may see ail environment that is medium dependent (see also Sections 7.6.5 and 8.3.7). [Pg.428]

Polymerizations of methacrylic monomers in the presence of methacrylic macromonomers under monomer-starved conditions display many of the characteristics of living polymerization (Scheme 9.36). These systems involve RAFT (Section 9.5.2). However, RAFT with appropriate thiocarbonylthio compounds is the most well known process of this class (Section 9.5.3). It is also the most versatile having been shown to be compatible with most monomer types and a very wide range of reaction conditions.382... [Pg.499]

Chain transfer to methacrylate and similar maeromonomers has been discussed in Section 6.2.3.4. The first papers on the use of this process to achieve some of the characteristics of living polymerization appeared in 1995.380 The structure of macromonomer RAFT agents (163) is shown in Figure 9.3. An idealized reaction scheme for the case of a MMA terminated macromonomer is shown in Scheme 9.36. [Pg.501]

Macromonomer RAFT polymerization is most effective with methacrylate monomers (Table 9.9).With monosubstituted monomers (e.g. S, acrylates) graft copolymerization, is a significant side reaction which can be mitigated but not eliminated by the use of higher reaction temperatures. [Pg.501]

Table 9.9 Block Copolymers Prepared by Macromonomer RAFT Polymerization under Starved-Feed Conditions.380"595... Table 9.9 Block Copolymers Prepared by Macromonomer RAFT Polymerization under Starved-Feed Conditions.380"595...
Transfer constants of the macromonomers arc typically low (-0.5, Section 6.2.3.4) and it is necessary to use starved feed conditions to achieve low dispersities and to make block copolymers. Best results have been achieved using emulsion polymerization380 395 where rates of termination are lowered by compartmentalization effects. A one-pot process where macromonomers were made by catalytic chain transfer was developed.380" 95 Molecular weights up to 28000 that increase linearly with conversion as predicted by eq. 16, dispersities that decrease with conversion down to MJM< 1.3 and block purities >90% can be achieved.311 1 395 Surfactant-frcc emulsion polymerizations were made possible by use of a MAA macromonomer as the initial RAFT agent to create self-stabilizing lattices . [Pg.502]

A novel approach to RAFT emulsion polymerization has recently been reported.461529 In a first step, a water-soluble monomer (AA) was polymerized in the aqueous phase to a low degree of polymerization to form a macro RAFT agent. A hydrophobic monomer (BA) was then added under controlled feed to give amphiphilic oligomers that form micelles. These constitute a RAFT-containing seed. Continued controlled feed of hydrophobic monomer may be used to continue the emulsion polymerization. The process appears directly analogous to the self-stabilizing lattices approach previously used in macromonomer RAFT polymerization (Section 9.5.2). Both processes allow emulsion polymerization without added surfactant. [Pg.521]

One of the major advantages of radical polymerization over most other forms of polymerization, (anionic, cationic, coordination) is that statistical copolymers can be prepared from a very wide range of monomer types that can contain various unprotected functionalities. Radical copolymerization and the factors that influence copolymer structure have been discussed in Chapter 7. Copolymerization of macromonomers by NMP, ATRP and RAFT is discussed in Section 9.10.1. [Pg.525]

A side reaction in NMP is loss of nilroxide functionality by thermal elimination. This may occur by disproportionation of the propagating radical with nitroxide or direct elimination of hydroxy lam ine as discussed in Section 9.3.6.3. In the case of methacrylate polymerization this leaves an unsaturated end group.1" The chemistry has also been used to prepare macromonomers from PMMA prepared by ATRP (Section 9.7.2.1),... [Pg.533]


See other pages where Macromonomers polymerizations is mentioned: [Pg.4]    [Pg.172]    [Pg.3]    [Pg.301]    [Pg.212]    [Pg.121]    [Pg.675]    [Pg.184]    [Pg.4]    [Pg.172]    [Pg.3]    [Pg.301]    [Pg.212]    [Pg.121]    [Pg.675]    [Pg.184]    [Pg.182]    [Pg.164]    [Pg.729]    [Pg.730]    [Pg.732]    [Pg.252]    [Pg.297]    [Pg.299]    [Pg.311]    [Pg.400]    [Pg.400]    [Pg.401]    [Pg.420]    [Pg.423]    [Pg.481]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Cross-polymerized macromonomers

Macromonomer

Macromonomer RAFT polymerization

Macromonomer Synthesis Using Anionic Polymerization Methods

Macromonomer Synthesis Using Cationic Polymerization

Macromonomer synthesis, addition anionic polymerization

Macromonomers

Macromonomers Obtained by Atom Transfer Radical Polymerization

Macromonomers Obtained by Nitroxide-Mediated Polymerization

Macromonomers cross-polymerization

Macromonomers free-radical polymerization

Macromonomers living polymerization

Macromonomers step growth polymerization

Macromonomers, polystyrene anionic living polymerization

Nitroxide-mediated polymerization macromonomers

Polymerization and Copolymerization of Macromonomers

Polymerization, cationic macromonomer initiators

RAFT polymerization macromonomer agents

© 2024 chempedia.info