Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyesters mixture dyeing

Imperial Chemical Industries I>td Dyehonse circular No. 576) have described continuous processes for dyeing fast colours on cellulosic and polyester mixtures. Pale shades may be padded with a solution containing Soledon dyes together with ... [Pg.582]

Standard polyester fibers contain no reactive dye sites. PET fibers are typically dyed by diffusiag dispersed dyestuffs iato the amorphous regions ia the fibers. Copolyesters from a variety of copolymeri2able glycol or diacid comonomers open the fiber stmcture to achieve deep dyeabiHty (7,28—30). This approach is useful when the attendant effects on the copolyester thermal or physical properties are not of concern (31,32). The addition of anionic sites to polyester usiag sodium dimethyl 5-sulfoisophthalate [3965-55-7] has been practiced to make fibers receptive to cationic dyes (33). Yams and fabrics made from mixtures of disperse and cationicaHy dyeable PET show a visual range from subde heather tones to striking contrasts (see Dyes, application and evaluation). [Pg.325]

Antlblaze 19. Antiblaze 19 (Mobil), a flame retardant for polyester fibers (134), is a nontoxic mixture of cycHc phosphonate esters. Antiblaze 19 is 100% active, whereas Antiblaze 19T is a 93% active, low viscosity formulation for textile use. Both are miscible with water and are compatible with wetting agents, thickeners, buffers, and most disperse dye formulations. Antiblaze 19 or 19T can be diffused into 100% polyester fabrics by the Thermosol process for disperse dyeing and printing. This requires heating at 170—220°C for 30—60 s. [Pg.490]

Methyl- and dimethylnaphthalenes are contained in coke-oven tar and in certain petroleum fractions in significant amounts. A typical high temperature coke-oven coal tar, for example, contains ca 3 wt % of combined methyl- and dimethylnaphthalenes (6). In the United States, separation of individual isomers is seldom attempted instead a methylnaphtha1 ene-rich fraction is produced for commercial purposes. Such mixtures are used for solvents for pesticides, sulfur, and various aromatic compounds. They also can be used as low freezing, stable heat-transfer fluids. Mixtures that are rich in monomethyinaphthalene content have been used as dye carriers (qv) for color intensification in the dyeing of synthetic fibers, eg, polyester. They also are used as the feedstock to make naphthalene in dealkylation processes. PhthaUc anhydride also can be made from m ethyl n aph th al en e mixtures by an oxidation process that is similar to that used for naphthalene. [Pg.487]

This mixture is known as Quinoline Yellow A [8003-22-3] (Cl 47000) and is most widely used with polyester fibers (109). Upon sulfonation, the water-soluble Quinoline Yellow S or Acid Yellow 3 [8004-92-0] (Cl 47005) is obtained. This dye is used with wool and its aluminum salt as a pigment. Foron Yellow SE-3GL (Cl Disperse Yellow 64) is the 3-hydroxy-4-bromo derivative. Several other quinoline dyes are commercially available and find apphcations as biological stains and analytical reagents (110). [Pg.395]

A mixture of monolauryl phosphate sodium salt and triethylamine in H20 was treated with glycidol at 80°C for 8 h to give 98% lauryl 2,3-dihydro-xypropyl phosphate sodium salt [304]. Dyeing aids for polyester fibers exist of triethanolamine salts of ethoxylated phenol-styrene adduct phosphate esters [294], Fatty ethanolamide phosphate surfactant are obtained from the reaction of fatty alcohols and fatty ethanolamides with phosphorus pentoxide and neutralization of the product [295]. A double bond in the alkyl group of phosphoric acid esters alter the properties of the molecule. Diethylethanolamine salt of oleyl phosphate is effectively used as a dispersant for antimony oxide in a mixture of xylene-type solvent and water. The composition is useful as an additive for preventing functional deterioration of fluid catalytic cracking catalysts for heavy petroleum fractions. When it was allowed to stand at room temperature for 1 month it shows almost no precipitation [241]. [Pg.615]

Many brilliantly coloured and tinctorially strong basic dyes for silk and tannin-mordanted cotton were developed in the early decades of the synthetic dye industry. Most of these belonged to the acridine, azine, oxazine, triarylmethane, xanthene and related chemical classes their molecules are usually characterised by one delocalised positive charge. Thus in crystal violet (1.29) the cationic charge is shared between the three equivalent methylated p-amino nitrogen atoms. A few of these traditional basic dyes are still of some interest in the dyeing of acrylic fibres, notably as components of cheap mixture navies and blacks, but many modified basic dyes were introduced from the 1950s onwards for acrylic and modacrylic fibres, as well as for basic-dyeable variants of nylon and polyester [44] ... [Pg.25]

Derivatives of diaminoanthrarufin (3.77 X = Y = H) and its 1,8-dihydroxy-4,5-diamino isomer (diaminochrysazin) have been among the most widely used anthraquinone dyes for ester fibres. For example, methylation of diaminoanthrarufin gives Cl Disperse Blue 26, a mixture of several components. Study of the pure N-alkylated derivatives from the base confirmed that monosubstitution (3.77 X = H, Y = alkyl) gives mid-blue dyes with excellent dyeing properties and acceptable fastness on polyester, but the bis-alkyl dyes (3.77 X = Y = alkyl) are greener and inferior in application properties. Mixtures of the unsubstituted base with alkylated components, as obtained industrially, were especially advantageous for build-up to heavy depths, however [93]. [Pg.131]

Two commercial disazo disperse dyes of relatively simple structure were selected for a recent study of photolytic mechanisms [180]. Both dyes were found to undergo photoisomerism in dimethyl phthalate solution and in films cast from a mixture of dye and cellulose acetate. Light-induced isomerisation did not occur in polyester film dyed with the two products, however. The prolonged irradiation of Cl Disperse Yellow 23 (3.161 X = Y = H) either in solution or in the polymer matrix yielded azobenzene and various monosubstituted azobenzenes. Under similar conditions the important derivative Orange 29 (3.161 X = N02, Y = OCH3) was degraded to a mixture of p-nitroaniline and partially reduced disubstituted azobenzenes. [Pg.165]

Blue Anthraquinone Dyes. All the important blue anthraquinone disperse dyes contain at least two amino groups in either the 1,4- or 1,5-positions, often with two additional hydroxy groups in the 5,8- or 4,8-respectively. The 1,4-substituted compounds are obtained by condensing the reduction product of quinizarin, 1,4-dihydroxyan-thraquinone, often called the leuco form, with the desired amines as shown in Figure 2.12. It should be noted that most anthraquinone disperse dyes are mixtures of products and not single compounds as drawn, a fact beneficial to their dyeing performance on polyester. [Pg.92]

This mixture is known as Quinoline Yellow A and is most widely used with polyester fibers. Several other quinoline dyes are commercially available and find applications as pigments, biological stains, and analytical reagents. [Pg.1401]

The most successful naphthoxidine-derived dye was 19 [26846-51-5], which is prepared by bromination of naphthoxidine in acetic acid in the presence of a catalytic amount of iodine or iron. The commercial dye is in fact a mixture of various brominated products, of which 19 is the predominant component. The product is a clear blue disperse dye suitable for acetate and polyester fibers. [Pg.336]

Elastomeric polyurethane fibers [96, pp. 609-615], are contained in stretch articles and in knitted fashion materials. Light shades can be dyed tone-on-tone on polyamide-polyurethane mixtures with disperse dyes at 95-98°C and pH 6-7. However, the wetfastness of these dyeings on polyurethanes is lower than on polyamide. Because of the temperature sensitivity of polyurethane fibers, mixtures of elastomeric and polyester fibers must be dyed with small-molecular, rapidly diffusing disperse dyes in 30 min at 120 °C according to the HT process [148], Modified PES fibers that are dyeable at 100°C without a carrier are often used in mixtures with elastomeric fibers. In all dyeing processes for elastomeric fibers, dyeing equipment that permits low-strain guidance of the material and the lowest possible thermal stress are important. [Pg.411]

Hoechst A. G., "Process and Device for the Continuous Fixation of Prints and Pad-Dyeings on Polyester Fibers and Their Mixtures With Cellulose Fibers", U.S. Patent 3,973,902 (Aug. 10, 1976). [Pg.153]

The application of color to a substrate in the form of a spray of finely divided colorant is an accepted practice for metal coatings (3.,4). The feasibility of dyeing polyester fabrics by the application of powdered disperse dyes to the fabric has been demonstrated (5) however, many development problems such as efficient recovery of unfixed dye and the homogeneous application of dye mixtures need to be resolved. Likewise, the use of 100% solids" systems as, for example, radla-tion-cureable finishes will also require considerable development work. [Pg.155]

Separation of benzene/cyclohexane mixture is investigated most extensively. This is not surprising because separation of this mixture is very important in practical terms. Benzene is used to produce a broad range of valuable chemical products styrene (polystyrene plastics and synthetic rubber), phenol (phenolic resins), cyclohexane (nylon), aniline, maleic anhydride (polyester resins), alkylbenzenes and chlorobenzenes, drugs, dyes, plastics, and as a solvent. Cyclohexane is used as a solvent in the plastics industry and in the conversion of the intermediate cyclohexanone, a feedstock for nylon precursors such as adipic acid. E-caprolactam, and hexamethylenediamine. Cyclohexane is produced mainly by catalytic hydrogenation of benzene. The unreacted benzene is present in the reactor s effluent stream and must be removed for pure cyclohexane recovery. [Pg.257]


See other pages where Polyesters mixture dyeing is mentioned: [Pg.293]    [Pg.295]    [Pg.440]    [Pg.119]    [Pg.467]    [Pg.873]    [Pg.196]    [Pg.24]    [Pg.141]    [Pg.475]    [Pg.175]    [Pg.440]    [Pg.119]    [Pg.295]    [Pg.1048]    [Pg.360]    [Pg.552]    [Pg.166]    [Pg.894]    [Pg.322]    [Pg.629]    [Pg.1125]    [Pg.77]    [Pg.173]    [Pg.280]    [Pg.528]    [Pg.212]    [Pg.581]    [Pg.582]    [Pg.582]    [Pg.65]   
See also in sourсe #XX -- [ Pg.581 ]




SEARCH



Polyesters dyeing

Polyesters polyamide mixtures, dyeing

© 2024 chempedia.info