Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyesters for polyurethanes

Desmophen n. Polyester for polyurethanes. Manufactured by Bayer, Germany. [Pg.271]

Polymers. AH nitro alcohols are sources of formaldehyde for cross-linking in polymers of urea, melamine, phenols, resorcinol, etc (see Amino RESINS AND PLASTICS). Nitrodiols and 2-hydroxymethyl-2-nitro-l,3-propanediol can be used as polyols to form polyester or polyurethane products (see Polyesters Urethane polymers). 2-Methyl-2-nitro-l-propanol is used in tires to promote the adhesion of mbber to tire cord (qv). Nitro alcohols are used as hardening agents in photographic processes, and 2-hydroxymethyl-2-nitro-l,3-propanediol is a cross-linking agent for starch adhesives, polyamides, urea resins, or wool, and in tanning operations (17—25). Wrinkle-resistant fabric with reduced free formaldehyde content is obtained by treatment with... [Pg.61]

Polyester Polyols. Initially polyester polyols were the preferred raw materials for polyurethanes, but in the 1990s the less expensive polyether polyols dominate the polyurethane market. Inexpensive aromatic polyester polyols have been introduced for rigid foam appHcations. These are obtained from residues of terephthaHc acid production or by transesterification of dimethyl terephthalate (DMT) or poly(ethylene terephthalate) (PET) scrap with glycols. [Pg.347]

Hydrolysis studies compared a polycarbonate urethane with a poly(tetramethyl-ene adipate) urethane and a polyether urethane based on PTMEG. After 2 weeks in 80°C water, the polycarbonate urethane had the best retention of tensile properties [92], Polycarbonates can hydrolyze, although the mechanism of hydrolysis is not acid-catalyzed, as in the case of the polyesters. Polycarbonate polyurethanes have better hydrolysis resistance than do standard adipate polyurethanes, by virtue of the highest retention of tensile properties. It is interesting to note in the study that the PTMEG-based urethanes, renowned for excellent hydrolysis resistance, had lower retention of physical properties than did the polycarbonate urethanes. [Pg.808]

Fatty acids, both saturated and unsaturated, have found a variety of applications. Brassilic acid (1,11-un-decanedicarboxylic acid [BA]), an important monomer used in many polymer applications, is prepared from erucic acid (Scheme 2), obtained from rapeseed and crambe abyssinica oils by ozonolysis and oxidative cleavage [127]. For example, an oligomer of BA with 1,3-butane diol-lauric acid system is an effective plasticizer for polyvinylchloride. Polyester-based polyurethane elastomers are prepared from BA by condensing with ethylene glycol-propylene glycol. Polyamides based on BA are known to impart moisture resistance. [Pg.419]

Abrasion-resistant duties may involve abrasion in an aqueous phase or abrasion by dry particulate materials. The selection of the polyurethane type is most important to obtain the best results. Polyester-based polyurethanes perform best in dry abrasion due to their low hysteresis properties and excellent resistance to cut initiation and propagation. However, polyester polyurethanes are susceptible to hydrolytic degradation, and therefore polyether polyurethanes are normally used for aqueous abrasion duties. [Pg.941]

Mechanical properties. See also Dynamic mechanical analysis (DMA) of polyamides, 138 of polyester LCPs, 52 of polyurethanes, 242-244 of semicrystalline aromatic-aliphatic polyesters, 45 Mechanical recycling, 208 Medical applications, for polyurethanes, 207... [Pg.588]

Phosphorus trichloride also reacts with glycol and ethylene oxide to form other a-hydroxyalkanephosphonates, serving as additives for polyurethane and polyester plastics to make these substances flame-resistant. [Pg.582]

In industrial processes, 1,3-propanediol is used for the production of polyester fibers, polyurethanes and cydic compounds [85]. 1,3-Propanediol can be produced from glucose with the limiting step catalyzed by glycerol dehydratase. A metagenomic survey for glycerol hydratases from the environment resulted in seven positive clones, one of which displayed a level of catalytic efficiency and stability making it ideal for application in the produdion of 1,3-propanediol from glucose. [Pg.79]

Dallas, Texas, 6th-10th May, 2001, paper 389 POLYESTER POLYOLS FOR POLYURETHANES FROM RECYCLED PET... [Pg.37]

Recently, many synthetic polymers such as urea/formalin resin, melamine/formalin resin, polyester, and polyurethane have been widely used as the wall material for the microcapsule, though the gelatin microcapsule is still used. Microcapsules using a synthetic polymer wall have several advantages over those using a gelatin wall (1) the preparation process is simple, (2) the size of the microcapsules is well balanced, (3) the microcapsule concentration can be increased twofold or more and (4) the microcapsules have a high resistance to water and many chemicals. Synthetic microcapsules are prepared by interfacial polymerization or in situ polymerization. [Pg.199]

Essentially nonionic soil-release agents comprise polyesters, polyamides, polyurethanes, polyepoxides and polyacetals. These have been used mainly on polyester and polyester/ cellulosic fabrics, either crosslinked to effect insolubilisation (if necessary) or by surface adsorption at relatively low temperature. Polyester soil-release finishes have been most important, particularly for polyester fibres and their blends with cellulosic fibres. These finishes, however, have much lower relative molecular mass (1000 to 100 000) than polyester fibres and hence contain a greater proportion of hydrophilic hydroxy groups. They have been particularly useful for application in laundering processes. These essentially nonionic polymers may be given anionic character by copolymerising with, for example, the carboxylated polymers mentioned earlier these hybrid types are generally applied with durable press finishes. [Pg.267]

Behaviour similar to that shown by the polyester-forming systems is shown by the several polyurethane-forming systems which have been studied(3,4,6,15,23-28), and Figure 6 and Table II give the results(29) for polyurethane-forming systems from which network materials have been formed at complete reaction. [Pg.386]

P.Y.110 lends color to polystyrene and styrene containing plastics. It is a suitable candidate for unsaturated polyester and other cast resins, as well as for polyurethane. P.Y.110 is used to an appreciable extent in polypropylene spin dyeing, it is very lightfast in this medium. It is utilized in polyacrylonitrile spin dyeing and sometimes also in polyamide. Its fastness properties, however, especially its lightfastness, do not meet special application conditions (Sec. 1.8.3.8). [Pg.414]

All the BTXs are high-octane gasoline blending components. In the petrochemicals business, toluene is used as a building block for polyurethane. Para-xylene and ortho-xylene are used to make polyester fibers and plastics, allcyd resins, and plasticizers. [Pg.53]

The use of HMF or the corresponding dialdehyde precursors obviously applies to the synthesis of monomers for polycondensation reactions as shown by the examples given in Scheme 2. ITiese difimctional structures again mimic the corresponding well-known aliphatic and aromatic counterparts used in the preparation of polyesters, polyamides, polyurethanes, etc. [Pg.196]


See other pages where Polyesters for polyurethanes is mentioned: [Pg.364]    [Pg.364]    [Pg.1136]    [Pg.364]    [Pg.364]    [Pg.1136]    [Pg.363]    [Pg.485]    [Pg.145]    [Pg.481]    [Pg.162]    [Pg.296]    [Pg.125]    [Pg.190]    [Pg.466]    [Pg.71]    [Pg.740]    [Pg.880]    [Pg.408]    [Pg.376]    [Pg.31]    [Pg.207]    [Pg.617]    [Pg.62]    [Pg.713]    [Pg.10]    [Pg.12]    [Pg.67]    [Pg.271]    [Pg.204]    [Pg.281]    [Pg.54]    [Pg.149]    [Pg.196]    [Pg.51]   
See also in sourсe #XX -- [ Pg.324 , Pg.330 , Pg.331 , Pg.334 , Pg.339 , Pg.340 , Pg.342 , Pg.343 , Pg.344 ]

See also in sourсe #XX -- [ Pg.364 , Pg.372 , Pg.379 , Pg.382 , Pg.384 , Pg.386 ]




SEARCH



Polyester polyurethane

© 2024 chempedia.info