Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyester characteristics

Polyesters make tough and wear-resistant urethanes. The one major drawback is the hydrolysis at the ester grouping. The hydrolysis can either be acid or alkali promoted. In more neutral conditions, the major breakdown product is normally adipic acid that catalyses further attack. The normal approach is to use carbodiimides to block further breakdown. Polyols made using polypropylene carbonate produce polyurethanes with polyester characteristics but with enhanced hydrolysis resistance. [Pg.272]

Physical testing appHcations and methods for fibrous materials are reviewed in the Hterature (101—103) and are generally appHcable to polyester fibers. Microscopic analyses by optical or scanning electron microscopy are useful for evaluating fiber parameters including size, shape, uniformity, and surface characteristics. Computerized image analysis is often used to quantify and evaluate these parameters for quaUty control. [Pg.332]

Miscellaneous chemicals are used to modify the final properties of rigid polyurethane foams. Eor example, halogenated materials are used for flammabihty reduction, diols may be added for toughness or flexibiUty, and terephthalate-based polyester polyols may be used for decreased flammabiUty and smoke generation. Measurements of flammabihty and smoke characteristics are made with laboratory tests and do not necessarily reflect the effects of foams in actual fire situations. [Pg.418]

Chemical Properties. Trimethylpentanediol, with a primary and a secondary hydroxyl group, enters into reactions characteristic of other glycols. It reacts readily with various carboxyUc acids and diacids to form esters, diesters, and polyesters (40). Some organometaUic catalysts have proven satisfactory for these reactions, the most versatile being dibutyltin oxide. Several weak bases such as triethanolamine, potassium acetate, lithium acetate, and borax are effective as stabilizers for the glycol during synthesis (41). [Pg.373]

Chemical Properties. The chemistry of 1,4-cyclohexanedimethanol is characteristic of general glycol reactions however, its two primary hydroxyl groups give very rapid reaction rates, especially in polyester synthesis. [Pg.374]

Naphthalenediol. This diol is prepared by the alkah fusion of 2-hydroxynaphthalene-6-sulfonic acid (Schaffer acid) at 290—295°C. Schaffer acid is usually produced by sulfonation of 2-naphthol with the addition of sodium sulfate at 85—105°C. This acid is also used as a coupling component in the production of a2o dyes such as Acid Black 26. 2,6-Naphthalenediol is used as a component in the manufacture of aromatic polyesters which, as is also tme of the corresponding amides, display Hquid crystal characteristics (52). [Pg.500]

The majority of spunbonded fabrics are based on isotactic polypropylene and polyester (Table 1). Small quantities are made from nylon-6,6 and a growing percentage from high density polyethylene. Table 3 illustrates the basic characteristics of fibers made from different base polymers. Although some interest has been seen in the use of linear low density polyethylene (LLDPE) as a base polymer, largely because of potential increases in the softness of the final fabric (9), economic factors continue to favor polypropylene (see OlefinPOLYMERS, POLYPROPYLENE). [Pg.163]

Performance Characteristics Polyester resins undergo a rapid transformation from a viscous Hquid to a soHd plastic state that comprises a three-dimensional cross-linked polymer stmcture. The level of polyester polymer unsaturation determines essential performance characteristics (Table 7), although polymer components can influence subtle features that affect thermal, electrical, and mechanical performance as defined by ASTM procedures. [Pg.320]

CSPE. Chlorosulfonated polyethylene (CSPE), a synthetic mbber manufactured by DuPont, is marketed under the name Hypalon. It can be produced as a self-curing elastomer designed to cure on the roof. The membrane is typically reinforced with polyester and is available in finished thicknesses of 0.75 to 1.5 mm. Because CSPE exhibits thermoplastic characteristics before it cures, it offers heat-weldable seams. After exposure on the roof, the membrane cures offering the toughness and mechanical set of a thermoset. The normal shelf life of the membrane for maintaining this thermoplastic characteristic is approximately six months. After the membrane is fully cured in the field, conventional adhesives are needed to make repairs. [Pg.213]

CPA. Copolymer alloy membranes (CPAs) are made by alloying high molecular weight polymeries, plasticizers, special stabilizers, biocides, and antioxidants with poly(vinyl chloride) (PVC). The membrane is typically reinforced with polyester and comes in finished thicknesses of 0.75—1.5 mm and widths of 1.5—1.8 m. The primary installation method is mechanically fastened, but some fully adhered systems are also possible. The CPA membranes can exhibit long-term flexibiHty by alleviating migration of the polymeric plasticizers, and are chemically resistant and compatible with many oils and greases, animal fats, asphalt, and coal-tar pitch. The physical characteristics of a CPA membrane have been described (15). [Pg.213]

BP. These nitrile alloy membranes are compounded from PVC, flexibilized by the addition of butadiene—acrylonitrile copolymers, PVC, and other proprietary ingredients. Typically reinforced with polyester scrim, NBP membranes are 1 mm thick and have a width of 1.5 m. They ate ptedominandy used in mechanically fastened roofing systems. NBP membranes exhibit excellent teat and puncture resistance as well as good weatherabihty, and remain flexible at low temperatures. They ate resistant to most chemicals but ate sensitive to aromatic hydrocarbons. The sheet is usually offered in light colors. The physical characteristics of NBP membranes have been described (15). [Pg.214]

Synthetic fabrics can also be finished to achieve a number of specific characteristics (199). For example, increased electrical conductivity can improve the antistatic character of polyester. Similarly, finishes that improve hydrophilic character also improve properties related to soil release and soil redeposition (199,200). [Pg.449]

The avadabihty of PMDI also led to the development of polyurethane-modified isocyanurate (PUIR) foams by 1967. The PUIR foams have superior thermal stabiUty and combustibiUty characteristics, which extend the use temperature of insulation foams well above 150°C. The PUIR foams are used in pipe, vessel, and solar panel insulation glass-fiber-reinforced PUIR roofing panels having superior dimensional stabiUty have also been developed. More recently, inexpensive polyester polyols based on residues obtained in the production of dimethyl terephthalate (DMT) have been used in the formulation of rigid polyurethane and PUIR foams. [Pg.342]


See other pages where Polyester characteristics is mentioned: [Pg.60]    [Pg.264]    [Pg.268]    [Pg.276]    [Pg.293]    [Pg.299]    [Pg.300]    [Pg.310]    [Pg.315]    [Pg.320]    [Pg.377]    [Pg.426]    [Pg.491]    [Pg.118]    [Pg.167]    [Pg.375]    [Pg.265]    [Pg.459]    [Pg.144]    [Pg.289]    [Pg.299]    [Pg.315]    [Pg.320]    [Pg.320]    [Pg.321]    [Pg.321]    [Pg.321]    [Pg.323]    [Pg.32]    [Pg.149]    [Pg.535]    [Pg.311]    [Pg.449]    [Pg.84]    [Pg.309]    [Pg.295]   
See also in sourсe #XX -- [ Pg.227 ]




SEARCH



© 2024 chempedia.info