Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polychloroprene, polyisoprene

Poly(isoprene) can also he prepared by radical polymerization/ 17 Although the ratio of l,4- l,2- 4,3- units is stated to be ca 90 5 5 irrespective of the polymerization temperature (range -20-50 °C), the proportion of cis-1,4-addition increases from 0 at -20 °C to 17.6% at 50 °C. EPR studies indicate that radicals add preferentially to the 1-position.87 [Pg.185]


DETA has also been used in the measurement of the Tg of butyl rubbers, ethylene-propylene-diene, Neoprene, nitrile, polybutadiene, polychloroprene, polyisoprene and styrene-butadiene [5]. [Pg.172]

Latex mbber foams are generally prepared in slab or molded forms in the density range 64—128 kg/m (4—8 lbs/fT). Synthetic SBR latexes have replaced natural mbber latexes as the largest volume raw material for latex foam mbber. Other elastomers used in significant quantities are polychloroprene, nitrile mbbers, and synthetic i j -polyisoprene (115). [Pg.408]

The close structural similarities between polychloroprene and the natural rubber molecule will be noted. However, whilst the methyl group activates the double bond in the polyisoprene molecule the chlorine atom has the opposite effect in polychloroprene. Thus the polymer is less liable to oxygen and ozone attack. At the same time the a-methylene groups are also deactivated so that accelerated sulphur vulcanisation is not a feasible proposition and alternative curing systems, often involving the pendant vinyl groups arising from 1,2-polymerisation modes, are necessary. [Pg.295]

Other polymers used in the PSA industry include synthetic polyisoprenes and polybutadienes, styrene-butadiene rubbers, butadiene-acrylonitrile rubbers, polychloroprenes, and some polyisobutylenes. With the exception of pure polyisobutylenes, these polymer backbones retain some unsaturation, which makes them susceptible to oxidation and UV degradation. The rubbers require compounding with tackifiers and, if desired, plasticizers or oils to make them tacky. To improve performance and to make them more processible, diene-based polymers are typically compounded with additional stabilizers, chemical crosslinkers, and solvents for coating. Emulsion polymerized styrene butadiene rubbers (SBRs) are a common basis for PSA formulation [121]. The tackified SBR PSAs show improved cohesive strength as the Mooney viscosity and percent bound styrene in the rubber increases. The peel performance typically is best with 24—40% bound styrene in the rubber. To increase adhesion to polar surfaces, carboxylated SBRs have been used for PSA formulation. Blends of SBR and natural rubber are commonly used to improve long-term stability of the adhesives. [Pg.510]

Both side groups and carbon-carbon double bonds can be incorporated into the polymer structure to produce highly resilient rubbers. Two typical examples are polyisoprene and polychloroprene rubbers. On the other hand, the incorporation of polar side groups into the rubber structure imparts a dipolar nature which provides oil resistance to these rubbers. Oil resistance is not found in rubber containing only carbon and hydrogen atoms (e.g. natural rubber). Increasing the number of polar substituents in the rubber usually increases density, reduces gas permeability, increases oil resistance and gives poorer low-temperature properties. [Pg.580]

The standard polymers used for rubber linings consist of materials that are cross-linkable macromolecules which, on mixing with suitable reactants that form strong chemical bonds, change from a soft deformable substance into an elastic material. These polymers include natural rubber and its corresponding synthetic, c/s-polyisoprene, styrene-butadiene rubber, polychloroprene, butyl rubber, halogenated butyl rubbers, acrylonitrile-... [Pg.938]

Early work on the microstructurc of the diene polymers has been reviewed.1 While polymerizations of a large number of 2-substituted and 2,3-disubstituted dienes have been reported,88 little is known about the microstructure of diene polymers other than PB,89 polyisoprene,90 and polychloroprene.91... [Pg.183]

The reaction of ozone with olefinic compounds is very rapid. Substiments on the double bond, which donate electrons, increase the rate of reaction, while electron-withdrawing substituents slow the reaction down. Thus, the rate of reaction with ozone decreases as follows polyisoprene > polybutadiene > polychloroprene [48]. The effect of substiments on the double bond is clearly demonstrated in Tables 15.2 and 15.3. Rubbers that contain only pendant double bonds such as EPDM do not cleave since the double bond is not in the polymer backbone. [Pg.471]

Maleimides Alkyl and aryl maleimides in small concentrations, e.g., 5-10 wt% significantly enhance yield of cross-link for y-irradiated (in vacuo) NR, cw-l,4-polyisoprene, poly(styrene-co-butadiene) rubber, and polychloroprene rubber. A-phenyhnaleimide and m-phenylene dimaleimide have been found to be most effective. The solubihty of the maleimides in the polymer matrix, reactivity of the double bond and the influence of substituent groups also affect the cross-fink promoting ability of these promoters [82]. The mechanism for the cross-link promotion of maleimides is considered to be the copolymerization of the rubber via its unsaturations with the maleimide molecules initiated by radicals and, in particular, by allyfic radicals produced during the radiolysis of the elastomer. Maleimides have also been found to increase the rate of cross-linking in saturated polymers like PE and poly vinylacetate [33]. [Pg.864]

Diene polymers refer to polymers synthesized from monomers that contain two carbon-carbon double bonds (i.e., diene monomers). Butadiene and isoprene are typical diene monomers (see Scheme 19.1). Butadiene monomers can link to each other in three ways to produce ds-1,4-polybutadiene, trans-l,4-polybutadi-ene and 1,2-polybutadiene, while isoprene monomers can link to each other in four ways. These dienes are the fundamental monomers which are used to synthesize most synthetic rubbers. Typical diene polymers include polyisoprene, polybutadiene and polychloroprene. Diene-based polymers usually refer to diene polymers as well as to those copolymers of which at least one monomer is a diene. They include various copolymers of diene monomers with other monomers, such as poly(butadiene-styrene) and nitrile butadiene rubbers. Except for natural polyisoprene, which is derived from the sap of the rubber tree, Hevea brasiliensis, all other diene-based polymers are prepared synthetically by polymerization methods. [Pg.547]

In 1931 Du Pont introduced the first synthetic elastomer, polychloroprene (Neoprene , Duprene ), and Thiokol Corporation introduced a polysulfide rubber called Thiokol . Polychloroprene, although veiy expensive compared to polyisoprene, has superior age resistance and chemical inertness. It is also nonflammable. [Pg.334]

Many of the synthetic elastomers now made are still polymerized by a free radical mechanism. Polychloroprene, polybutadiene, polyisoprene, and styrene-butadiene copolymer are made this way. Initiation by peroxides is common. Many propagation steps create high molecular weight products. Review the mechanism of free radical polymerization of dienes given in Chapter 14, Section 2.2. [Pg.335]

Natural Rubber and Synthetic Polyisoprene Polybutadiene and Its Copolymers Polyisobutylene and Its Copolymers Ethylene-Propylene Copolymers and Terpolymers Polychloroprene Silicone Elastomers Fluorocarbon Elastomers Fluorosilicone Elastomers Electron Beam Processing of Liquid Systems Grafting and Other Polymer Modifications... [Pg.9]

Elastomers, synthetic -acrylic elastomers [ELASTOMERS, SYNTHETIC - ACRYLIC ELASTOMERS] (Vol 8) -butyl rubber [ELASTOMERS, SYNTHETIC - BUTYL RUBBER] (Vol 8) -chlorosulfonated polyethylene [ELASTOMERS, SYNTHETIC - CHLOROSULFONATED POLYETHYLENE] (Vol 8) -ethylene-acrylic elastomers [ELASTOMERS, SYNTHETIC - ETHYLENE-ACRYLIC ELASTOMERS] (Vol 8) -ethylene-propylene-diene rubber [ELASTOMERS,SYNTHETTC - ETHYLENE-PROPYLENE-DIENE RUBBER] (Vol 8) -fluorocarbon elastomers [ELASTOMERS, SYNTHETIC - FLUOROCARBON ELASTOMERS] (Vol 8) -nitrile rubber [ELASTOMERS, SYNTHETIC - NITRILE RUBBER] (Vol 8) -phosphazenes [ELASTOMERS, SYNTHETIC - PHOSPHAZENES] (Vol 8) -polybutadiene [ELASTOMERS, SYNTHETIC - POLYBUTADIENE] (Vol 8) -polychloroprene [ELASTOMERS, SYNTHETIC - POLYCHLOROPRENE] (Vol 8) -polyethers (ELASTOMERS, SYNTHETIC - POLYETHERS] (Vol 8) -polyisoprene [ELASTOMERSSYNTHETTC - POLYISOPRENE] (Vol 9) -survey [ELASTOMERS, SYNTHETIC - SURVEY] (Vol 8)... [Pg.354]

The formation of coagulum is observed in all types of emulsion polymers (i) synthetic rubber latexes such as butadiene-styrene, acrylonitrile-butadiene, and butadiene-styrene-vinyl pyridine copolymers as well as polybutadiene, polychloroprene, and polyisoprene (ii) coatings latexes such as styrene-butadiene, acrylate ester, vinyl acetate, vinyl chloride, and ethylene copolymers (iii) plastisol resins such as polyvinyl chloride (iv) specialty latexes such as polyethylene, polytetrafluoroethylene, and other fluorinated polymers (v) inverse latexes of polyacrylamide and other water-soluble polymers prepared by inverse emulsion polymerization. There are no major latex classes produced by emulsion polymerization that are completely free of coagulum formation during or after polymerization. [Pg.201]

Poly(methyl acrylate) Poly(methyl methacrylate) Polyacrylonitrile Polymethacrylonitrile Polybutadiene Polyisoprene Polychloroprene Poly(methylene oxide) Poly(ethylene oxide) Poly(tetramethylene oxide) Poly(propylene oxide) Poly(hexamethylene succinate) Poly(hexamethylene sebacate) Poly(ethylene terephthalate) Nylon 6 Polycarbonate... [Pg.254]

Figure 5.1. Molecular structures of the chemical repeat units for common polymers. Shown are (a) polyethylene (PE), (b) poly(vinyl chloride) (PVC), (c) polytetrafluoroethylene (PTFE), (d) polypropylene (PP), (e) polyisobutylene (PIB), (f) polybutadiene (PBD), (g) c/5-polyisoprene (natural rubber), (h) traw5-polychloroprene (Neoprene rubber), (i) polystyrene (PS), (j) poly(vinyl acetate) (PVAc), (k) poly(methyl methacrylate) (PMMA), ( ) polycaprolactam (polyamide - nylon 6), (m) nylon 6,6, (n) poly(ethylene teraphthalate), (o) poly(dimethyl siloxane) (PDMS). Figure 5.1. Molecular structures of the chemical repeat units for common polymers. Shown are (a) polyethylene (PE), (b) poly(vinyl chloride) (PVC), (c) polytetrafluoroethylene (PTFE), (d) polypropylene (PP), (e) polyisobutylene (PIB), (f) polybutadiene (PBD), (g) c/5-polyisoprene (natural rubber), (h) traw5-polychloroprene (Neoprene rubber), (i) polystyrene (PS), (j) poly(vinyl acetate) (PVAc), (k) poly(methyl methacrylate) (PMMA), ( ) polycaprolactam (polyamide - nylon 6), (m) nylon 6,6, (n) poly(ethylene teraphthalate), (o) poly(dimethyl siloxane) (PDMS).
Except for the elimination of HCI, pyrolysis products of polychloroprene correspond rather well with those of isoprene. Besides the monomer and 3,7-dichloroocta-1,4,6-triene (which can be considered as a dimer of chloroprene), another compound found in appreciable levels in polychloroprene pyrolysate is 1-chloro-5-(1-chloroethenyl)-cyclohexene. This compound corresponds to diprene or 1-methyl-5-(1-methyivinyl)-cyclohex-1 -ene in the pyrolysate of polyisoprene. [Pg.460]

Significant developments in synthetic rubber began at this time. Outstanding were the introduction of polychloroprene (neoprene) by Carothers, and of the oil-resistant polysulfide rubber Thiokol by Patrick. These were soon followed by styrene-butadiene copolymers, nitrile rubber, butyl rubber, and various other types, some of which were rushed into production for the war effort in the early 1940s. The stereospecific catalysts researched by Ziegler and Natta aided this development, including synthesis of true rubber hydrocarbon (polyisoprene). Since 1935 synthetic rubbers have been referred to as elastomers. [Pg.1369]

Elastomers include natural rubber (polyisoprene), synthetic polyisoprene, styrene-butadiene rubbers, butyl rubber (isobutylene-isoprene), polybutadiene, ethylene-propylene-diene (EPDM), neoprene (polychloroprene), acrylonitrile-butadiene rubbers, polysulfide rubbers, polyurethane rubbers, crosslinked polyethylene rubber and polynorbomene rubbers. Typically in elastomer mixing the elastomer is mixed with other additives such as carbon black, fillers, oils/plasticizers and accelerators/antioxidants. [Pg.408]

The main types of rubber used in the field of anti-corrosion are natural rubber, polyisoprene, polybutadiene, polyurethane, butyl rubber, styrene butadiene, nitrile rubber, ethylene propylene rubber, polychloroprene, silicone rubber, and vinylidene rubber. The wide ranges of available natural and synthetic rubbers offer a versatility of properties to suit almost every corrosive condition encountered in the process industries. [Pg.15]

Poly( 1,4-butadiene) (See Fig. 6.13) Polyisoprene Polychloroprene Poly(vinylidene chloride)... [Pg.234]


See other pages where Polychloroprene, polyisoprene is mentioned: [Pg.184]    [Pg.184]    [Pg.240]    [Pg.184]    [Pg.184]    [Pg.240]    [Pg.296]    [Pg.282]    [Pg.317]    [Pg.252]    [Pg.163]    [Pg.675]    [Pg.699]    [Pg.170]    [Pg.169]    [Pg.1349]    [Pg.26]    [Pg.91]    [Pg.660]    [Pg.37]    [Pg.32]    [Pg.1098]    [Pg.282]    [Pg.186]    [Pg.186]   


SEARCH



Polychloroprene

Polychloroprenes

Polyisoprene

Polyisoprenes

© 2024 chempedia.info