Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyamidation, kinetics

L.M. Postnikov Photooxidation of aliphatic polyamides Kinetic analysis, mechanism, principles of stabilization. Author s abstract of doctor dissertation, Moscow (1984) (in Russian). [Pg.167]

The main polymerization method is by hydrolytic polymerization or a combination of ring opening as in (3.11) and hydrolytic polymerization as in (3.12).5,7 9 11 28 The reaction of a carboxylic group with an amino group can be noncatalyzed and acid catalyzed. This is illustrated in the reaction scheme shown in Fig. 3.13. The kinetics of the hydrolytic polyamidation-type reaction has die form shown in (3.13). In aqueous solutions, die polycondensation can be described by second-order kinetics.29 Equation (3.13) can also be expressed as (3.14) in which B is die temperature-independent equilibrium constant and AHa the endialpy change of die reaction5 6 812 28 29 ... [Pg.150]

Others have presented the kinetics of polyamidation differently. At high water concentrations (5-10 mol kg-1), a second-order reaction is given with an activation energy of approximately 86 kJ mol-1.5 612 28 At low water concentrations in die final stages of die polymerization, a mixed uncatalyzed second-order reaction and an acid-catalyzed third-order reaction are observed. The rate constant k in (3.13) can tiien be written as... [Pg.152]

C. Melander, P.B. Dervan, and D.M. Crothers. Kinetic consequences of covalent linkage of DNA binding polyamides. Biochemistry 2001, 40, 3-8. [Pg.149]

Comparison of chemiluminescence isothermal runs with oxygen uptake and DSC measurements has been at the centre of interest since practical industrial applications of the chemiluminescence method were attempted. It is a fact that the best comparison may be achieved when studying polymers that give a distinct induction time of oxidation typical for autoaccelerating curves of a stepwise developing oxidation. This is the particular case of polyolefins, polydienes and polyamides. The theoretical justification for the search of a mutual relationship between the oxidation runs found by the various methods follows directly from the kinetic analysis of the Bolland-Gee scheme of polymer oxidation. [Pg.476]

The effect of structural modification to 22 on the binding efficiency and binding dynamics of hairpin DNA immobilized on metal surfaces were studied using surface plasmon resonance.124,125 The association and dissociation kinetics were analyzed using a sequential model for the binding of the imidazole containing polyamides... [Pg.202]

Aromatic nitrations, 17 160-161 by-products of, 17 161 kinetics of, 17 162 Aromatic nitriles, 17 243 Aromatic nucleophilic displacement, polyimide synthesis via, 20 273 Aromatic phosphines, 19 60, 62 Aromatic poly(monosulfide ketone)s, 23 709 Aromatic poly(monosulfide)s, 23 706 Aromatic polyamide copolymers, laboratory synthesis of, 19 720 Aromatic polyamide fibers, 24 614 Aromatic polyamides, 10 210-212 19 713-738. See also Aliphatic polyamides (PA)... [Pg.70]

In a kinetic sense, the system is a better solvent than HFIP alone. We postulate that MeCl2 swells the amorphous regions of PET thereby providing HFIP with an easy access to the crystalline regions. This swelling action does not occur with HFIP alone, and the dissolution process takes much longer. At room temperature, amorphous PET is Instantaneously solubilized by this solvent system. PET that has been annealed for >24 hr at 220 C to yield maximum crystallinity dissolves in <4 hr at room temperature. PET annealed in this manner does not dissolve in pure HFIP after 14 days at room temperature. Poly(butylene terephthalate) and aliphatic polyamides are soluble in this solvent system. Polystyrene is also soluble, which permits conventional calibration and the use of the universal calibration approach. We have determined the Mark-Houwlnk relationships for PET and polystyrene in 70/30 MeCl2/HFIP to be... [Pg.220]

Most addition polymers are formed from polymerizations exhibiting chain-growth kinetics. This includes the typical polymerizations, via free radical or some ionic mode, of the vast majority of vinyl monomers such as vinyl chloride, ethylene, styrene, propylene, methyl methacrylate, and vinyl acetate. By comparison, most condensation polymers are formed from systems exhibiting stepwise kinetics. Industrially this includes the formation of polyesters and polyamides (nylons). Thus, there exists a large overlap between the terms stepwise kinetics and condensation polymers, and chainwise kinetics and addition (or vinyl) polymers. A comparison of the two types of systems is given in Table 4.1. [Pg.87]

Internal esters (lactones) and internal amides (lactams) are readily polymerized through a chainwise kinetic process forming polyesters and polyamides, clearly condensation polymers with respect to having noncarbons in the backbone, but without expulsion of a by-product ... [Pg.88]

Chromium and cobalt are the metals most commonly used in dyestuffs for polyamide fibres and leather because of their kinetic inertness and the stability of their complexes towards acid. Since the advent of fibre-reactive dyestuffs, chromium and cobalt complexes have also found application as dyestuffs for cellulosic fibres, particularly as black shades of high light-fastness. Copper complexes are of more importance as dyes for cellulosic fibres and are unsuitable for polyamide fibres because of their rather low stability towards acid treatments. [Pg.41]

Analysis of the non-isothermal polymerization of E-caprolactam is based on the equations for isothermal polymerization discussed above. At the same time, it is also important to estimate the effect of non-isothermal phenomena on polymerization, because in any real situation, it is impossible to avoid exothermal effects. First of all, let us estimate what temperature increase can be expected and how it influences the kinetics of reaction. It is reasonable to assume that the reaction proceeds under adiabatic conditions as is true for many large articles produced by chemical processing. The total energy produced in transforming e-caprolactam into polyamide-6 is well known. According to the experimental data of many authors, it is close to 125 -130 J/cm3. If the reaction takes place under adiabatic conditions, the result is an increase in temperature of up to 50 - 52°C this is the maximum possible temperature increase Tmax- In order to estimate the kinetic effect of this increase... [Pg.29]

Detailed kinetic schemes have also been proposed for many other polymers and the work of Bockhom et al.6-8 is representative of this large area of the literature for schemes relating to polyamide 6, PP, PE, and other polymers. Other experimental approaches, mainly aimed at identifying Arrhenius parameters in similar schemes, are discussed by Howell,9 Lehrle et al.,10 Shyichuk,11 Wilkie,12 and Holland and Hay.1314... [Pg.480]

Bockhorn, H., Homung, A., Homung, U., and Weichmann, J. Kinetic study on the non-catalysed and catalysed degradation of polyamide 6 with isothermal and dynamic methods. Thermochimica Acta 1999 337 14. [Pg.507]

Herrera, M., Matuschek, G., and Kettrup, A. (2001) Main products and kinetics of the thermal degradation of polyamids, Chemosphere 42(5) 601-607. [Pg.548]

Anionic polymerization of 67 by the activated monomer mechanism should occur with the selective cleavage of the CO—NH bond of the monomer to give a polyamide composed of kinetically controlled cis units (68c). However, the cis units isomerize to the thermodynamically more stable trans units (68t) through the proton abstraction from the methine group adjacent to the carbonyl group. This was ascertained by the isomerization experiment in which a polymer consisting of 92% cis unit and 8% trans unit was converted to one containing 40% cis unit and 60% trans unit when heated in dimethyl sulfoxide at 80 °C for 6 hours in the presence of 15 mol% potassium pyrrolidonate. [Pg.29]

This characteristic feature of cationic polymerization of THF allows the important synthetic application of this process for preparation of oli-godiols used in polyurethane technology and in manufacturing of block copolymers with polyesters and polyamides (cf., Section IV.A). On the other hand, the cationic polymerization of THF not affected by contribution of chain transfer to polymer is a suitable model system for studying the mechanism and kinetics of cationic ring-opening polymerization. [Pg.489]

Erank-Kamenetskii MD, Nielsen PE. Kinetics and mechanism of polyamide ( Peptide ) nucleic acid binding to duplex DNA. Proc. Natl. Acad. Sci. U.S.A. 1995 92 2637-2641. 32. [Pg.1447]

Aside textile and packaging applications the use of PET (Poly(ethylene Terephthalate) for structural applications is rather limited compared to equivalent polymers such as polyamides. Two main reasons can be given. Firstly, the high sensitivity of PET toward hydrolysis and its slow crystallisation kinetics constrain its processing. Secondly, its low glass transition temperature constrains its use if amorphous, whereas its weak impact resistance if semicrystalline constrains its use when crystallised. The industrial objective of this work deals with the latter of these points increasing the impact resistance of semi-crystalline PET. [Pg.65]

Polymerization in the melt is widely used commercially for the production of polyesters, polyamides, polycarbonates and other products. The reactions are controlled by the chemical kinetics, rather than by diffusion. Molecular weights and molecular weight distributions follow closely the statistical calculations indicated in the preceding section, at least for the three types of polymers mentioned above. There has been much speculation as to the effect of increasing viscosity on the rates of the reactions, without completely satisfactory explanations or experimental demonstrations yet available. Flory [7] showed that the rate of reaction between certain dicarboxylic acids and glycols was independent of viscosity for those materials, in the range studied. The viscosity range had a maximum of 0.3 poise, however, far below the hundreds of thousands of poises encountered in some polycondensations. [Pg.481]

The polyamidation reaction when carried out in the melt appears to follow second-order kinetics [87—90]. Thus, for equal concentrations (C) of —NH2 and —COOH groups, the second-order equation applies, viz. [Pg.527]

Ogata [94a] showed that the vEilue of the rate coefficient of polyamidation depended on the concentration of water when the reaction was carried out in a sealed tube in the presence of fixed amounts of water. He regarded the concentration of water as being constant under the conditions used, and the reaction then appeared to follow second-order kinetics, though the rate coefficient clearly must contain a term for the water concentration. [Pg.529]


See other pages where Polyamidation, kinetics is mentioned: [Pg.530]    [Pg.43]    [Pg.530]    [Pg.43]    [Pg.286]    [Pg.399]    [Pg.41]    [Pg.320]    [Pg.480]    [Pg.185]    [Pg.203]    [Pg.236]    [Pg.32]    [Pg.69]    [Pg.267]    [Pg.308]    [Pg.100]    [Pg.106]    [Pg.131]    [Pg.76]    [Pg.61]    [Pg.47]    [Pg.146]    [Pg.485]    [Pg.441]    [Pg.556]    [Pg.160]    [Pg.336]    [Pg.522]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Kinetic parameters, polyamides

Nylon 66 polyamidation kinetics

Polyamides kinetic data

Polymerization kinetics, polyamides

© 2024 chempedia.info