Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyacetylenic

In considering the molecules in Table 5.2 it should be remembered that the method of detection filters out any molecules with zero dipole moment. There is known to be large quantities of FI2 and, no doubt, there are such molecules as C2, N2, O2, FI—C=C—FI and polyacetylenes to be found in the clouds, but these escape detection by radioffequency, millimetre wave or microwave spectroscopy. [Pg.121]

A common example of the Peieds distortion is the linear polyene, polyacetylene. A simple molecular orbital approach would predict S hybddization at each carbon and metallic behavior as a result of a half-filled delocalized TT-orbital along the chain. Uniform bond lengths would be expected (as in benzene) as a result of the delocalization. However, a Peieds distortion leads to alternating single and double bonds (Fig. 3) and the opening up of a band gap. As a result, undoped polyacetylene is a semiconductor. [Pg.237]

A second type of soHd ionic conductors based around polyether compounds such as poly(ethylene oxide) [25322-68-3] (PEO) has been discovered (24) and characterized. These materials foUow equations 23—31 as opposed to the electronically conducting polyacetylene [26571-64-2] and polyaniline type materials. The polyethers can complex and stabilize lithium ions in organic media. They also dissolve salts such as LiClO to produce conducting soHd solutions. The use of these materials in rechargeable lithium batteries has been proposed (25). [Pg.510]

Polyacetylenes. The first report of the synthesis of a strong, flexible, free-standing film of the simplest conjugated polymer, polyacetylene [26571-64-2] (CH), was made in 1974 (16). The process, known as the Shirakawa technique, involves polymerization of acetylene on a thin-film coating of a heterogeneous Ziegler-Natta initiator system in a glass reactor, as shown in equation 1. [Pg.35]

The resulting porous, fibrillar polyacetylene film is highly crystalline, so is therefore insoluble, infusible, and otherwise nonprocessible. It is also unstable in air in both the conducting and insulating form. [Pg.35]

Much effort has been expended toward the improvement of the properties of polyacetylenes made by the direct polymerization of acetylene. Variation of the type of initiator systems (17—19), annealing or aging of the catalyst (20,21), and stretch orientation of the films (22,23) has resulted in increases in conductivity and improvement in the oxidative stabiHty of the material. The improvement in properties is likely the result of a polymer with fewer defects. [Pg.35]

Even with improvement in properties of polyacetylenes prepared from acetylene, the materials remained intractable. To avoid this problem, soluble precursor polymer methods for the production of polyacetylene have been developed. The most highly studied system utilizing this method, the Durham technique, is shown in equation 2. [Pg.35]

A drawback to the Durham method for the synthesis of polyacetylene is the necessity of elimination of a relatively large molecule during conversion. This can be overcome by the inclusion of strained rings into the precursor polymer stmcture. This technique was developed in the investigation of the ring-opening metathesis polymerization (ROMP) of benzvalene as shown in equation 3 (31). [Pg.35]

Copolymerizations of benzvalene with norhornene have been used to prepare block copolymers that are more stable and more soluble than the polybenzvalene (32). Upon conversion to (CH), some phase separation of nonconverted polynorhornene occurs. Other copolymerizations of acetylene with a variety of monomers and carrier polymers have been employed in the preparation of soluble polyacetylenes. Direct copolymeriza tion of acetylene with other monomers (33—39), and various techniques for grafting polyacetylene side chains onto solubilized carrier polymers (40—43), have been studied. In most cases, the resulting copolymers exhibit poorer electrical properties as solubiUty increases. [Pg.36]

There are several approaches to the preparation of multicomponent materials, and the method utilized depends largely on the nature of the conductor used. In the case of polyacetylene blends, in situ polymerization of acetylene into a polymeric matrix has been a successful technique. A film of the matrix polymer is initially swelled in a solution of a typical Ziegler-Natta type initiator and, after washing, the impregnated swollen matrix is exposed to acetylene gas. Polymerization occurs as acetylene diffuses into the membrane. The composite material is then oxidatively doped to form a conductor. Low density polyethylene (136,137) and polybutadiene (138) have both been used in this manner. [Pg.39]

Eig. 3. Lattice distortions associated with the neutral and soHton states in polyacetylene. [Pg.40]

Although polyacetylene has served as an excellent prototype for understanding the chemistry and physics of electrical conductivity in organic polymers, its instabiUty in both the neutral and doped forms precludes any useful appHcation. In contrast to poly acetylene, both polyaniline and polypyrrole are significantly more stable as electrical conductors. When addressing polymer stabiUty it is necessary to know the environmental conditions to which it will be exposed these conditions can vary quite widely. For example, many of the electrode appHcations require long-term chemical and electrochemical stabihty at room temperature while the polymer is immersed in electrolyte. Aerospace appHcations, on the other hand, can have quite severe stabiHty restrictions with testing carried out at elevated temperatures and humidities. [Pg.43]

GLASER - CHODKIEWCZ Acetylene Coupling Polyacetylenes from monoacetylenes in the presence of copper salts. [Pg.147]

STEPHENS CASTRO Acetylene cycloptiane synthesis Polyacetylene cyclophane synthesis from an iodophenyl copper acetylide... [Pg.363]

The polymers which have stimulated the greatest interest are the polyacetylenes, poly-p-phenylene, poly(p-phenylene sulphide), polypyrrole and poly-1,6-heptadiyne. The mechanisms by which they function are not fully understood, and the materials available to date are still inferior, in terms of conductivity, to most metal conductors. If, however, the differences in density are taken into account, the polymers become comparable with some of the moderately conductive metals. Unfortunately, most of these polymers also have other disadvantages such as improcessability, poor mechanical strength, instability of the doped materials, sensitivity to oxygen, poor storage stability leading to a loss in conductivity, and poor stability in the presence of electrolytes. Whilst many industrial companies have been active in their development (including Allied, BSASF, IBM and Rohm and Haas,) they have to date remained as developmental products. For a further discussion see Chapter 31. [Pg.120]

Whilst the conductivity of these polymers is generally somewhat inferior to that of metals (for example, the electrical conductivity of polyacetylenes has reached more than 400 000 S/cm compared to values for copper of about 600 000 S/cm), when comparisons are made on the basis of equal mass the situation may be reversed. Unfortunately, most of the polymers also display other disadvantages such as improcessability, poor mechanical strength, poor stability under exposure to common environmental conditions, particularly at elevated temperatures, poor storage stability leading to a loss in conductivity and poor stability in the presence of electrolytes. In spite of the involvement of a number of important companies (e.g. Allied, BASF, IBM and Rohm and Haas) commercial development has been slow however, some uses have begun to emerge. It is therefore instructive to review briefly the potential for these materials. [Pg.888]

Growth mechanism of a (9n,0) tubule, over 24n coordination sites of the catalyst. The growth of a general (9 ,0) tubule on the catalyst surface is illustrated by that of the (9,0) tubule in Fig. 16 which shows the unsaturated end of a (9,0) tubule in a planar representation. At that end, the carbons bearing a vacant bond are coordinatively bonded to the catalyst (grey circles) or to a growing cis-polyacetylene chain (oblique bold lines in Fig. 16). Tlie vacant bonds of the six c/s-polyacetylene chains involved are taken to be coordinatively bonded to the catalyst [Fig. 16(b)]. These polyacetylene chains are continuously extruded from the catalyst particle where they are formed by polymerization of C2 units assisted by the catalyst coordination sites. Note that in order to reduce the number of representations of important steps, Fig. 16(b) includes nine new Cj units with respect to Fig. 16(a). [Pg.99]

The 12 catalyst coordination sites — drawn further away from the surface of the particle (closer to the tubule) — are acting in pairs, each pair being always coordinatively bonded to one carbon of an inserted (F) or of a to-be-inserted (2 ) Cj unit and to two other carbons which are members of two neighbouring cis-polyacetylene chains (3°). It should be emphasized that, as against the (5n,5n) tubule growth, the C2 units extruded from the catalyst particle are positioned in this case parallel to the tubule axis before their insertion. [Pg.99]

Once the pair of sites is disconnected from the growing tubule [Fig. 17(d)], an orthogonal unit is inserted below the five membered ring [4° in Fig. 17(e)]. The latter inserted unit and the remaining two ci.s-polyacetylene C2 segments are finally displaced by the arrival two orthogonal C-, units [.r in Fig. 18(f)]. [Pg.101]


See other pages where Polyacetylenic is mentioned: [Pg.304]    [Pg.436]    [Pg.348]    [Pg.610]    [Pg.775]    [Pg.775]    [Pg.775]    [Pg.883]    [Pg.239]    [Pg.240]    [Pg.242]    [Pg.245]    [Pg.245]    [Pg.246]    [Pg.246]    [Pg.423]    [Pg.102]    [Pg.540]    [Pg.452]    [Pg.432]    [Pg.35]    [Pg.35]    [Pg.36]    [Pg.40]    [Pg.40]    [Pg.40]    [Pg.43]    [Pg.44]    [Pg.44]    [Pg.41]    [Pg.99]    [Pg.101]   


SEARCH



Polyacetylene

Polyacetylenes

© 2024 chempedia.info