Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Doped materials

The polymers which have stimulated the greatest interest are the polyacetylenes, poly-p-phenylene, poly(p-phenylene sulphide), polypyrrole and poly-1,6-heptadiyne. The mechanisms by which they function are not fully understood, and the materials available to date are still inferior, in terms of conductivity, to most metal conductors. If, however, the differences in density are taken into account, the polymers become comparable with some of the moderately conductive metals. Unfortunately, most of these polymers also have other disadvantages such as improcessability, poor mechanical strength, instability of the doped materials, sensitivity to oxygen, poor storage stability leading to a loss in conductivity, and poor stability in the presence of electrolytes. Whilst many industrial companies have been active in their development (including Allied, BSASF, IBM and Rohm and Haas,) they have to date remained as developmental products. For a further discussion see Chapter 31. [Pg.120]

An alternative approach to stabilizing the metallic state involves p-type doping. For example, partial oxidation of neutral dithiadiazolyl radicals with iodine or bromine will remove some electrons from the half-filled level. Consistently, doping of biradical systems with halogens can lead to remarkable increases in conductivity and several iodine charge transfer salts exhibiting metallic behaviour at room temperature have been reported. However, these doped materials become semiconductors or even insulators at low temperatures. [Pg.218]

The electronic conductivity of a conducting polymer can vary by more than 10 orders of magnitude with changing potential. For lightly p-doped materials, the conductivity generally increases exponentially with increasing potential (see Fig. 11). Slopes of 60-130 mV decade-1 are... [Pg.571]

Silicon can be doped with small amounts of phosphorus to create a semiconductor used in transistors, (a) Is the alloy interstitial or substitutional Justify your answer, (b) How do you expect the properties of the doped material to differ from those of pure silicon ... [Pg.330]

In the first three cycles, the capacity of the alanate is high for both materials, the titanium metal-doped and the nitride-doped material. However, after 15 cycles the hydrogen capacity decreases significantly below 4% for the titanium metal-doped sample, whereas for the nitride-doped sample the capacity remains high at about 5% hydrogen. [Pg.287]

In the past few years, erbium doped materials gained much attention in the field of optical communications, since the Er ion shows a broad optical emission at 1540 nm [111], within the main wavelengths window in the telecommunication technology. For this reason Er can be suitable as an active element for the generation and amplification of light in optical devices [112,113], also if limitations for the realization of an efficient planar amplifier are related to the small cross section for Er excitation (typically 10 -10 cm according to the matrix). In order to enhance Er ion pumping efficiency, a possible... [Pg.286]

Doping is achieved by adding dopant gases such as phosphine, diborane, or trimethylboron to the silane [545-547]. The doped material is of electronic quality comparable to PECVD-doped material. [Pg.158]

The determination of the electronic structure of lanthanide-doped materials and the prediction of the optical properties are not trivial tasks. The standard ligand field models lack predictive power and undergoes parametric uncertainty at low symmetry, while customary computation methods, such as DFT, cannot be used in a routine manner for ligand field on lanthanide accounts. The ligand field density functional theory (LFDFT) algorithm23-30 consists of a customized conduct of nonempirical DFT calculations, extracting reliable parameters that can be used in further numeric experiments, relevant for the prediction in luminescent materials science.31 These series of parameters, which have to be determined in order to analyze the problem of two-open-shell 4f and 5d electrons in lanthanide materials, are as follows. [Pg.2]

Figure 13 shows the irreversible conversion of a nonconjugated poly (p-phenylene pentadienylene) to a lithiun-doped conjugated derivative which has a semiconducting level of conductivity (0.1 to 1.0 S/cm) (29). Obviously, the neutral conjugated derivative of poly (p-phenylene pentadienylene) can then be reversibly generated from the n-type doped material by electrochemical undoping or by p-type compensation. A very similar synthetic method for the conversion of poly(acetylene-co-1,3-butadiene) to polyacetylene has been reported (30), Figure 14. This synthesis of polyacetylene from a nonconjugated precursor polymer containing isolated CH2 units in an otherwise conjugated chain is to be contrasted with the early approach of Marvel et al (6) in which an all-sp3 carbon chain was employed. Figure 13 shows the irreversible conversion of a nonconjugated poly (p-phenylene pentadienylene) to a lithiun-doped conjugated derivative which has a semiconducting level of conductivity (0.1 to 1.0 S/cm) (29). Obviously, the neutral conjugated derivative of poly (p-phenylene pentadienylene) can then be reversibly generated from the n-type doped material by electrochemical undoping or by p-type compensation. A very similar synthetic method for the conversion of poly(acetylene-co-1,3-butadiene) to polyacetylene has been reported (30), Figure 14. This synthesis of polyacetylene from a nonconjugated precursor polymer containing isolated CH2 units in an otherwise conjugated chain is to be contrasted with the early approach of Marvel et al (6) in which an all-sp3 carbon chain was employed.
There exist numerous conjugated macromolecules showing high electronic conductivities after doping. Materials thus prepared are also termed synthetic metals (their significance is documented, for example, by the existence of a journal of the same name). This section presents only a very brief summary of this constantly growing field. Further information can be found in numerous reviews and monographs the most representative ones are listed below. [Pg.336]

These processes can be made to occur in a number of ways, for example with gas phase reagents such as AsF5 and I2, solution species such as FeCl3 or using electrochemical oxidation and reduction, but regardless of the method used the basic process is the same. If the material is to maintain overall electrical neutrality during and after doping, a counter ion is required, i.e., for p-doped materials,... [Pg.4]

Irreversible reaction can occur with other dopants such as iodine (at elevated temperatures) [69] and FeCl3 [70], and a loss of conductivity is seen over a period of months for p-doped material even at room temperature, although n-doped material appears to have a higher degree of thermal stability [71]. [Pg.15]

As might be expected, the properties of polythiophene show many similarities with those of polypyrrole. As with polypyrrole, polythiophene can be prepared via other routes than electrochemical oxidation both as the neutral material [390-392] or in the p-doped form [393]. This material is produced as an infusible black powder which is insoluble in common solvents (and stable in air up to 360°C), with conductivities ranging from approximately 10 11 Scm-1 in the neutral form [390] to 102 Scm-1 when doped [19, 393, 394]. Early work on thiophene polymers showed that the p-doped material is air-sensitive in that the conductivity decreases on exposure to the atmosphere [20, 395] although no evidence of oxygen-containing species was seen in XPS measurements [19],... [Pg.51]

Polythiophene films can be electrochemically cycled from the neutral to the conducting state with coulombic efficiencies in excess of 95% [443], with little evidence of decomposition of the material up to + 1.4 V vs. SCE in acetonitrile [37, 54, 56, 396,400] (the 3-methyl derivative being particularly stable [396]), but unlike polypyrrole, polythiophene can be both p- and n-doped, although the n-doped material has a lower maximum conductivity [444], Cyclic voltammetry shows two sets of peaks corresponding to the p- and n-doping reactions, with E° values at approximately + 1.1 V and — 1.4 V respectively (vs. an Ag+/Ag reference electrode)... [Pg.57]

Further studies by this group centered on comparisons of the overoxidation resistance limit (ORL) of polypyrrole materials doped with monoanionic borane clusters [B12H11NH3] or dianionic borane [B12H12]2 or carborane [Co(C2B9Hu)2]2-clusters. The monoanionic boron clusters were found to offer the highest stability to the PPy doped materials against overoxidation than any other charged dopant. They were also found to be far superior to the dianionic clusters in their ability to impart an ORL rise.140... [Pg.70]

Bare CuOx-supported nanostructures showed some activity in H 2 production from methanol-water mixture under UV-visible irradiation [180]. Ni is also used as a dopant, and small amounts (1 wt.%) of this element in mesoporous titania guarantee good activity in water-methanol mixtures under UV-visible light [181]. Indium-tantalum oxide Ni-doped materials also provided photocatalysts with promising efficiencies for direct water splitting [182]. TiOz nanotubes doped with Ir and Co nanopartides were effective for visible light water splitting even in the absence of... [Pg.112]


See other pages where Doped materials is mentioned: [Pg.394]    [Pg.353]    [Pg.224]    [Pg.265]    [Pg.344]    [Pg.572]    [Pg.589]    [Pg.141]    [Pg.32]    [Pg.729]    [Pg.415]    [Pg.460]    [Pg.278]    [Pg.164]    [Pg.169]    [Pg.185]    [Pg.1]    [Pg.613]    [Pg.228]    [Pg.1151]    [Pg.2]    [Pg.3]    [Pg.4]    [Pg.33]    [Pg.48]    [Pg.295]    [Pg.97]    [Pg.101]    [Pg.104]    [Pg.365]    [Pg.377]    [Pg.422]    [Pg.284]    [Pg.329]    [Pg.340]   
See also in sourсe #XX -- [ Pg.229 ]

See also in sourсe #XX -- [ Pg.128 , Pg.129 , Pg.173 , Pg.240 , Pg.250 , Pg.269 ]




SEARCH



© 2024 chempedia.info