Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly PHASED analyzer

The quaternized copolymer of vinylpyrrolidone and dimethylaminoethylmetha-crylate (poly-VP/DMAEMA) has been analyzed successfully with Ultrahydrogel columns and a mobile phase of a 0.1 M Tris pH 7 buffer with 0.3 or 0.5 M lithium nitrate (14). In this study, poor recovery of a poly-VP/DMAEMA sample was noticed when 0.2 M lithium nitrate was used for KB-80M, SB806-MHQ, and TSK GM-PWxl columns. Good recovery was achieved with 0.4 M lithium nitrate, and M of the poly-VP/DMAEMA were found to be 290,000, 300,000, and 320,000 for the respective columns. This demonstrates the equivalence of these columns for SEC of cationic polymers. [Pg.524]

A new, fast, sensitive, and solventless extraction technique was developed in order to analyze beer carbonyl compounds. The method was based on solid-phase microextraction with on-fiber derivatization. A derivatization agent, 0-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBOA), was absorbed onto a divinyl benzene/poly(dimethylsiloxane) 65- xm fiber and exposed to the headspace of a vial with a beer sample. Carbonyl compounds selectively reacted with PFBOA, and the oximes formed were desorbed into a gas chromatograph injection port and quantified by mass spectrometry. This method provided very high reproducibility and linearity When it was used for the analysis of aged beers, nine aldehydes were detected 2-methylpropanal, 2-methylbutanal, 3-methylbutanal, pentanal, hexanal, furfural, methional, phenylacetaldehyde, and (E)-2-nonenal. (107 words)... [Pg.243]

In addition to classical reverse phase separation of peptides on octadecyl derivatized silica monoliths, sugars and peptides as well as proteins and nucleosides have been analyzed on a 20-cm-long silica-based poly(acrylic acid) column (ID. 200 pm), employing HILIC and weak cation-exchange chromatography, respectively [194]. Furthermore, HILIC fractionation of polysaccharides delivered remarkable and promising results [84,194]. [Pg.36]

Several different analytical and ultra-micropreparative CEC approaches have been described for such peptide separations. For example, open tubular (OT-CEC) methods have been used 290-294 with etched fused silicas to increase the surface area with diols or octadecyl chains then bonded to the surface.1 With such OT-CEC systems, the peptide-ligand interactions of, for example, angiotensin I-III increased with increasing hydrophobicity of the bonded phase on the capillary wall. Porous layer open tubular (PLOT) capillaries coated with anionic polymers 295 or poly(aspartic acid) 296 have also been employed 297 to separate basic peptides on the inner wall of fused silica capillaries of 20 pm i.d. When the same eluent conditions were employed, superior performance was observed for these PLOT capillaries compared to the corresponding capillary zone electrophoresis (HP-CZE) separation. Peptide mixtures can be analyzed 298-300 with OT-CEC systems based on octyl-bonded fused silica capillaries that have been coated with (3-aminopropyl)trimethoxysilane (APS), as well as with pressurized CEC (pCEC) packed with particles of similar surface chemistry, to decrease the electrostatic interactions between the solute and the surface, coupled to a mass spectrometer (MS). In the pressurized flow version of electrochromatography, a pLC pump is also employed (Figure 26) to facilitate liquid flow, reduce bubble formation, and to fine-tune the selectivity of the separation of the peptide mixture. [Pg.619]

High resolution l3C NMR is also used in the determination of the composition of the dispersed phase in cured rubber modified epoxies in order to analyze the chemical structure of the mobile segments 152). In this case quantitative analysis is possible because the areas under each peak are approximately equal to the number of carbons contributing to the peak, and the intensities of the broad lines from the rigid phase are very low, almost indistinguishable from the baseline noise. The structure of crosslinked networks based on poly(3,4-pyrrolidinediethylene), synthesized by different methods, was determined from gels swollen in water and chloroform 153). [Pg.52]

Poly (diethyl siloxane) was suggested by Beatty et al. 1651 based on DSC, dielectric, NMR, and X-ray measurements to possess liquid crystalline type order between about 270 and 300 K. The macromolecule shows two large lower temperature first order transitions, one at about 200 K, the other at about 270 K166 ll,7). The transition of the possible mesophase to the isotropic liquid at 300 K is quite small and irre-producible, so that variable, partial crystallinity was proposed 165) [measured heat of transition about 150 J/mole1S8)], Very little can be said about this state which may even consist of residual crystals. It is of interest, however, to further analyze the high temperature crystal phase between 200 and 270 K. It is produced from the, most likely, fully ordered crystal with an estimated heat and entropy of transition of 5.62kJ/mol and 28J/(Kmol), respectively [calculated from calorimetric data 1S6)... [Pg.47]

Aqueous samples may be analyzed by HPLC using a C-18 derivatized reverse phase column or on an underivatized polystyrene-divinylbenzene column such as Poly-RP CO (Alltech 1995) gradient acetonitrile and 0.01 A/ K,P04 at pH 7 (55 45) and the analyte detected by UV at 254 nm. [Pg.364]

The structures formed by polystyrene-poly(propylene imine) dendrimers have also been analyzed. Block copolymers with 8, 16, and 32 end-standing amines are soluble in water. They have a critical micelle concentration of the order of 10"7 mol/1. At 3x10 4 mol/l they form different types of micelles. The den-drimer with eight amine groups (80% PS) form bilayers. The dendrimer with 16 amine groups (65% PS) forms cylinders and the dendrimer with 32 amine groups (50% PS) forms spherical micelles [38,130,131]. These are the classical lamellar, cylindrical, and spherical phases of block copolymers. However, the boundary between the phases occurs at very different volume fractions, due to the very different packing requirements of the linear polymer and spherical dendrimer at the interphase. [Pg.216]

Transparent Polymers. Amorphous thermoplastics, like poly (methyl methacrylate), polystyrene, SAN, PVC, or the cellulose esters are transparent and used for glazing, photographic film, blown bottles, or clear packaging containers. Only a few crystalline thermoplastics, like poly (4-methyl-l-pentane), where the crystalline and the amorphous phases have almost identical refractive indexes, or polycarbonate, which has smaller crystals than the wavelength of light, are also transparent. R. Kosfeld and co-workers analyzed the mobility of methyl groups in polycarbonate, poly (methyl methacrylate) and poly( -methyl styrene) by NMR spectroscopy. [Pg.14]

Many computational studies of the permeation of small gas molecules through polymers have appeared, which were designed to analyze, on an atomic scale, diffusion mechanisms or to calculate the diffusion coefficient and the solubility parameters. Most of these studies have dealt with flexible polymer chains of relatively simple structure such as polyethylene, polypropylene, and poly-(isobutylene) [49,50,51,52,53], There are, however, a few reports on polymers consisting of stiff chains. For example, Mooney and MacElroy [54] studied the diffusion of small molecules in semicrystalline aromatic polymers and Cuthbert et al. [55] have calculated the Henry s law constant for a number of small molecules in polystyrene and studied the effect of box size on the calculated Henry s law constants. Most of these reports are limited to the calculation of solubility coefficients at a single temperature and in the zero-pressure limit. However, there are few reports on the calculation of solubilities at higher pressures, for example the reports by de Pablo et al. [56] on the calculation of solubilities of alkanes in polyethylene, by Abu-Shargh [53] on the calculation of solubility of propene in polypropylene, and by Lim et al. [47] on the sorption of methane and carbon dioxide in amorphous polyetherimide. In the former two cases, the authors have used Gibbs ensemble Monte Carlo method [41,57] to do the calculations, and in the latter case, the authors have used an equation-of-state method to describe the gas phase. [Pg.294]

To overcome the difficulties of ESI-MS, Simonsick and Prokai added sodium cations to the mobile phase to facilitate ionization [165,166]. To simplify the resulting ESI spectra, the number of components entering the ion source was reduced. Combining SEC with electrospray detection, the elution curves of polyethylene oxides) were calibrated. The chemical composition distribution of acrylic macromonomers was profiled across the molar mass distribution. The analysis of poly(ethylene oxides) by SEC-ESI-MS with respect to chemical composition and oligomer distribution was discussed by Simonsick [167]. In a similar approach aliphatic polyesters [168], phenolic resins [169], methyl methacrylate macromonomers [169] and polysulfides have been analyzed [170]. The detectable mass range for different species, however, was well below 5000 g/mol, indicating that the technique is not really suited for polymer analysis. [Pg.49]

The glass transition of the phase rich in poly(n-butyl acrylate), Tg2, ranged from —59° to —48°C. However the estimated experimental error ( 4°C) was fairly large compared with the range of Tg2, 12°C. When the contour plots of Tg2 were analyzed, no trends were significant... [Pg.222]


See other pages where Poly PHASED analyzer is mentioned: [Pg.430]    [Pg.1029]    [Pg.881]    [Pg.132]    [Pg.229]    [Pg.292]    [Pg.377]    [Pg.433]    [Pg.132]    [Pg.134]    [Pg.306]    [Pg.17]    [Pg.160]    [Pg.79]    [Pg.173]    [Pg.1]    [Pg.1029]    [Pg.606]    [Pg.806]    [Pg.497]    [Pg.256]    [Pg.199]    [Pg.327]    [Pg.4]    [Pg.204]    [Pg.114]    [Pg.21]    [Pg.35]    [Pg.173]    [Pg.787]    [Pg.456]    [Pg.310]    [Pg.191]    [Pg.1029]    [Pg.60]    [Pg.99]    [Pg.120]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Phase analyzer

Poly phases

© 2024 chempedia.info