Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly paste polymer

Vipla Poly(vinyl chloride) paste polymers, PVC European Vinyls Corp. [Pg.2350]

Increa sing the bulkiness of the alkyl group from the esterifying alcohol in the ester also restricts the motion of backbone polymer chains past each other, as evidenced by an increase in the T within a series of isomers. In Table 1, note the increase in T of poly(isopropyl methacrylate) over the / -propyl ester and similar trends within the butyl series. The member of the butyl series with the bulkiest alcohol chain, poly(/-butyl methacrylate), has a T (107°C) almost identical to that of poly(methyl methacrylate) (Tg = 105° C), whereas the butyl isomer with the most flexible alcohol chain, poly( -butyl methaciylate), has a T of 20°C. Further increase in the rigidity and bulk of the side chain increases the T. An example is poly(isobomyl methacrylate)... [Pg.261]

As the poly(alkenoic acid) ionizes, polymer chains unwind as the negative charge on them increases, and the viscosity of the cement paste increases. The concentration of cations increases until they condense on the polyadd chain. Desolvation occurs and insoluble salts precipitate, first as a sol which then converts to a gel. This represents the initial set. [Pg.135]

The physical properties of the acid- and ion-containing polymers are quite interesting. The storage moduli vs. temperature behavior (Figure 8) was determined by dynamic mechanical thermal analysis (DMTA) for the PS-PIBMA diblock precursor, the polystyrene diblock ionomer and the poly(styrene)-b-poly(isobutyl methacrylate-co-methacrylic acid) diblock. The last two samples were obtained by the KC>2 hydrolysis approach. It is important to note that these three curves are offset for clarity, i.e. the modulus of the precursor is not necessarily higher than the ionomer. In particular, one should note the same Tg of the polystyrene block before and after ionomer formation, and the extension of the rubbery plateau past 200°C. In contrast, flow occurred in... [Pg.270]

Our interest in the past few years has been on biodegradable polymers. We have been evaluating the potential of poly(phosphoesters) as degradable biomaterials (4).We were attracted to this class of polymers because the phosphoester bond in the backbone is cleavable under physiological conditions, the presence of the P-O-C group would facilitate fabrication, and the versatile chemical structure affords a wide... [Pg.141]

Research in polysilane polymers grew slowly at first after this reawakening. But within the past few years, both the unusual scientific interest and the technological possibilities of the polysilanes have been recognized, and activity in this field has increased sharply. Commercial manufacture of both poly dimethylsilylene) and "polysilastyrene" is now being carried out in Japan, so that these two polymers are readily available in quantity. [Pg.7]

Skotheim et al. [286, 357, 362] have performed in situ electrochemistry and XPS measurements using a solid polymer electrolyte (based on poly (ethylene oxide) (PEO) [363]), which provides a large window of electrochemical stability and overcomes many of the problems associated with UHV electrochemistrty. The use of PEO as an electrolyte has also been investigated by Prosperi et al. [364] who found slow diffusion of the dopant at room temperature as would be expected, and Watanabe et al. have also produced polypyrrole/solid polymer electrolyte composites [365], The electrochemistry of chemically prepared polypyrrole powders has also been investigated using carbon paste electrodes [356, 366] with similar results to those found for electrochemically-prepared material. [Pg.47]

Dendrons and dendrimers are the most intensely investigated subset of dendritic polymers. In the past decade over 2000 literature references have appeared on this unique class of structure controlled polymers. The term dendrimer was coined by Tomalia, et al. over 15 years ago in the first reports on poly(amidoamine) (PAMAM) dendrimers [75, 76]. It is derived from the Greek words dendri-(branch tree-like) and meros - part of). Poly(amidoamine) dendrimers constitute the first dendrimer family to be commercialized and undoubtedly represent the most extensively characterized and best understood series at this time. In view of the extensive literature information in this area, much of the remaining overview will focus on PAMAM dendrimers and will... [Pg.20]

Reactions with Isocyanates. The reaction of alcohols with isocyanates to form carbamates is well known and similar reactions with poly(vinyl alcohol) would be expected. Until recently, the only available reaction conditions were to use a heterogeneous reaction mixture or to run the reaction in a poor solvent for poly(vinyl alcohol). The best poly(vinyl alcohol) solvents, water and formaide derivatives, react rapidly with isocyanates. Nevertheless, several such reactions have been run in the past and we will cite only a few of them. A potentially photosensitive polymer was made by the reaction of allyl isocyanate with poly(vinyl alcohol) (57) and several workers have crosslinked poly(vinyl alcohol) with hexamethylene diisocyanate (58.59). [Pg.92]

Besides silicon, other materials have also been used in micro fuel cells. Cha et al. [79] made micro-FF channels on SU8 sheets—a photosensitive polymer that is flexible, easy to fabricate, thin, and cheaper than silicon wafers. On top of fhe flow channels, for both the anode and cathode, a paste of carbon black and PTFE is deposited in order to form the actual diffusion layers of the fuel cell. Mifrovski, Elliott, and Nuzzo [80] used a gas-permeable elastomer, such as poly(dimethylsiloxane) (PDMS), as a diffusion layer (with platinum electrodes embedded in it) for liquid-electrolyte-based micro-PEM fuel cells. [Pg.223]

Much research has already been devoted in the past couple of years to (i) the immobilization of ATRP active metal catalysts on various supports to allow for catalyst separation and reycycling and (ii) ATRP experiments in pure water as the solvent of choice [62]. A strategy to combine these two demands with an amphiphilic block polymer has recently been presented. Two types of polymeric macroligands where the ligand was covalently linked to the amphiphilic poly(2-oxazo-line)s were prepared. In the case of ruthenium, the triphenylphosphine-functiona-lized poly(2-oxazoline)s described in section 6.2.3.2 were used, whereas in the case of copper as metal, 2,2 -bipyridine functionalized block copolymers were prepared via living cationic polymerization [63] of 2-methyl-2-oxazoline and a bipyridine-functionalized monomer as shown in Scheme 6.8. [Pg.292]

During the past decade, the properties and applications of the monoesters and diesters derived from itaconic acid have received growing interest because the monomers can be obtained biotechnologically and a great variety of related polymers can be synthesized thanks to two lateral esterifiable groups contained in the monomer [65]. The first work on poly(monomethyl itaconate) (PMMI)/ PVPo complexes was done by Bimendina et al. [66], and it was followed by Pe-... [Pg.143]


See other pages where Poly paste polymer is mentioned: [Pg.84]    [Pg.199]    [Pg.90]    [Pg.539]    [Pg.114]    [Pg.189]    [Pg.371]    [Pg.1216]    [Pg.29]    [Pg.74]    [Pg.164]    [Pg.119]    [Pg.212]    [Pg.43]    [Pg.192]    [Pg.408]    [Pg.494]    [Pg.304]    [Pg.903]    [Pg.58]    [Pg.458]    [Pg.614]    [Pg.680]    [Pg.632]    [Pg.716]    [Pg.63]    [Pg.111]    [Pg.187]    [Pg.331]    [Pg.282]    [Pg.36]    [Pg.268]    [Pg.135]    [Pg.108]    [Pg.348]    [Pg.142]    [Pg.189]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 ]




SEARCH



Poly polymers

© 2024 chempedia.info