Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly , microscopic

A similar approach, in spirit, has been proposed [212] for the study of two-component classical systems, for example poly electrolytes, which consist of mesoscopic, highly-charged, poly ions, and microscopic. [Pg.2276]

Commercial poly(methyl methacrylate) is a transparent material, and microscopic and X-ray analyses generally indicate that the material is amorphous. For this reason the polymer was for many years considered to be what is now known as atactic in structure. It is now, however, known that the commercial material is more syndiotactic than atactic. (On one scale of assessment it might be considered about 54% syndiotactic, 37% atactic and 9% isotactic. Reduction in the temperature of free-radical polymerisation down to -78°C increases the amount of syndiotacticity to about 78%). [Pg.405]

In the JKR experiments, a macroscopic spherical cap of a soft, elastic material is in contact with a planar surface. In these experiments, the contact radius is measured as a function of the applied load (a versus P) using an optical microscope, and the interfacial adhesion (W) is determined using Eqs. 11 and 16. In their original work, Johnson et al. [6] measured a versus P between a rubber-rubber interface, and the interface between crosslinked silicone rubber sphere and poly(methyl methacrylate) flat. The apparatus used for these measurements was fairly simple. The contact radius was measured using a simple optical microscope. This type of measurement is particularly suitable for soft elastic materials. [Pg.94]

As an indication of the changes in deformation modes that can be produced in ionomers by increase of ion content, consider poly(styrene-co-sodium methacrylate). In ionomers of low ion content, the only observed deformation mode in strained thin films cast from tetra hydrofuran (THF), a nonpolar solvent, is localized crazing. But for ion contents near to or above the critical value of about 6 mol%, both crazing and shear deformation bands have been observed. This is demonstrated in the transmission electron microscope (TEM) scan of Fig. 3 for an ionomer of 8.2 mol% ion content. Somewhat similar deformation patterns have also been observed in a Na-SPS ionomer having an ion content of 7.5 mol%. Clearly, in both of these ionomers, the presence of a... [Pg.146]

ABA type poly(hydroxyethyl methacrylate) (HEMA) and PDMS copolymers were synthesized by the coupling reactions of preformed a,co-isocyanate terminated PDMS oligomers and amine-terminated HEMA macromonomers312). Polymerization reactions were conducted in DMF solution at 0 °C. Products were purified by precipitation in diethyl ether to remove unreacted PDMS oligomers. After dissolving in DMF/toluene mixture, copolymers were reprecipitated in methanol/water mixture to remove unreacted HEMA oligomers. Microphase separated structures were observed under transmission electron microscope, using osmium tetroxide stained thin copolymer films. [Pg.45]

The state of the surface of a brittle solid has been found to exert a considerable influence on the mechanical behaviour observed it is at least as important as the underlying molecular constitution in this regard. The presence of microscopic scratches, voids, or other imperfections will seriously weaken the tensile strength of specimens of glassy polymer, such as poly(methyl methacrylate) at ambient temperatures. [Pg.100]

Section 6 has considered various approaches to bridge the gap between the microscopic and the semimicroscopic regime for simulation of complex poly-... [Pg.147]

We have recently initiated our investigation of blends by examining the compatibility between our modified polymer sample 4 and poly(methyl methacrylate). Mixtures with a composition of between 10% and 30% of sample 4 yield compatible blends which are transparent under a polarized light microscope, and are characterized by a single Tg. Mixtures richer than 60% of 4 undergo complete phase separation. [Pg.310]

Recent developments have allowed atomic force microscopic (AFM) studies to follow the course of spherulite development and the internal lamellar structures as the spherulite evolves [206-209]. The major steps in spherulite formation were followed by AFM for poly(bisphenol) A octane ether [210,211] and more recently, as seen in the example of Figure 12 for a propylene 1-hexene copolymer [212] with 20 mol% comonomer. Accommodation of significant content of 1-hexene in the lattice allows formation and propagation of sheaf-like lamellar structure in this copolymer. The onset of sheave formation is clearly discerned in the micrographs of Figure 12 after crystallization for 10 h. Branching and development of the sheave are shown at later times. The direct observation of sheave and spherulitic formation by AFM supports the major features that have been deduced from transmission electron and optical microscopy. The fibrous internal spherulite structure could be directly observed by AFM. [Pg.275]

Poly(A) synthesis also occurred in the second system, but the product remained within the vesicles. Walde also determined the increase of the vesicle concentration, which corresponds to that expected for an autocatalytic process. In this experiment, the enzyme PNPase is first captured by the vesicle envelope, and in the second step, ADP and oleic anhydride are added the anhydride is hydrolysed to the acid. ADP passes through the vesicle double layer and is polymerized in the interior of the vesicle by PNPase to give poly(A). Hydrolysis of the anhydride causes a constant additional delivery of vesicle-forming material, so that the amount of vesicle present increases during the poly(A) synthesis. These experiments demonstrated a model for a minimal cell. Autocatalytically synthesised giant vesicles could be prepared under similar conditions and observed under a microscope (Wik et al., 1995). [Pg.267]

Transmission electron microscope photograph of poly (hydroxy-styrene)-PDMSX copolymer. [Pg.168]

By fluorescence analyses just upon laser ablation and of ablated surface, Molecular aspects of ablation echanisa were elucidated and a characterization of ablated Materials was perforaed. Laser fluence dependence of poly(N-vinylcarbazole) fluorescence indicates the iaportance of Mutual interactions between excited singlet states. As the fluence was increased, a plasna-like eaission was also observed, and then fluorescence due to diatonic radicals was superinposed. While the polyner fluorescence disappeared Mostly during the pulse width, the radicals attained the naxinun intensity at 100 ns after irradiation. Fluorescence spectra and their rise as well as decay curves of ablated surface and its nearby area were affected to a great extent by ablation. This phenonenon was clarified by probing fluorescence under a Microscope. [Pg.400]

R. Hayashi, S. Tazuke, and C. W. Frank, Twisted intramolecular charge-transfer phenomenon as a fluorescence probe of microenvironment. Effect of polymer concentration on local viscosity and microscopic polarity around a polymer chain of poly(methyl methacrylate), Macromolecules 20, 983 (1987). [Pg.146]

It is notable that the GC samples in Table 4.1 are much too short for the Intermediate Zone formula to apply out to 120 ns. The formulas for subsequent zones of C (t) (Eqs. 4.38—4.41) are employed as needed and yield the same value of a for both 230- and 590-bp samples.(146) The 590-bp sample initially exhibited a threefold higher value, which relaxed over several months, during which time many very small fragments dissociated from, or annealed out of, the predominant 590-bp species. This was tentatively attributed to the presence of branched structures, which exhibit high affinity sites for ethidiuny in the original material. Both gel electrophoretic and electron microscopic 147 1 evidence for branched structures in poly(dG-dC) were noted.(146) The 500-bp length from gel electrophoresis was confirmed by sedimentation.(146)... [Pg.190]

Wolfert MA, Seymour LW. Atomic force microscopic analysis of the influence of the molecular weight of poly(L)lysine on the size of polyelectrolyte complexes formed with DNA. Gene Ther 1998 3(3) 269-273. [Pg.309]


See other pages where Poly , microscopic is mentioned: [Pg.28]    [Pg.393]    [Pg.221]    [Pg.484]    [Pg.513]    [Pg.43]    [Pg.439]    [Pg.178]    [Pg.191]    [Pg.142]    [Pg.96]    [Pg.427]    [Pg.150]    [Pg.274]    [Pg.280]    [Pg.281]    [Pg.404]    [Pg.69]    [Pg.86]    [Pg.113]    [Pg.80]    [Pg.126]    [Pg.156]    [Pg.67]    [Pg.239]    [Pg.410]    [Pg.468]    [Pg.209]    [Pg.4]    [Pg.276]    [Pg.393]    [Pg.154]    [Pg.325]    [Pg.197]    [Pg.352]    [Pg.314]   


SEARCH



Poly , microscopic using

Poly optical microscope images

Poly polarized light microscope

Poly scanning electron microscope images

© 2024 chempedia.info