Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly kinetics

Bulk Polymerization. This is the method of choice for the manufacture of poly(methyl methacrylate) sheets, rods, and tubes, and molding and extmsion compounds. In methyl methacrylate bulk polymerization, an auto acceleration is observed beginning at 20—50% conversion. At this point, there is also a corresponding increase in the molecular weight of the polymer formed. This acceleration, which continues up to high conversion, is known as the Trommsdorff effect, and is attributed to the increase in viscosity of the mixture to such an extent that the diffusion rate, and therefore the termination reaction of the growing radicals, is reduced. This reduced termination rate ultimately results in a polymerization rate that is limited only by the diffusion rate of the monomer. Detailed kinetic data on the bulk polymerization of methyl methacrylate can be found in Reference 42. [Pg.265]

An example is poly(bis(p-carboxyphenoxy)propane) (PCPP) which has been prepared as a copolymer with various levels of sebacic anhydride (SA). Injection molded samples of poly (anhydride) / dmg mixtures display 2ero-order kinetics in both polymer erosion and dmg release. Degradation of these polymers simply releases the dicarboxyhc acid monomers (54). Preliminary toxicological evaluations showed that the polymers and degradation products had acceptable biocompatibiUty and did not exhibit cytotoxicity or mutagenicity (55). [Pg.192]

The poly(vinyl alcohol) made for commercial acetalization processes is atactic and a mixture of cis- and /n j -l,3-dioxane stereoisomers is formed during acetalization. The precise cis/trans ratio depends strongly on process kinetics (16,17) and small quantities of other system components (23). During formylation of poly(vinyl alcohol), for example, i j -acetalization is more rapid than /ra/ j -acetalization (24). In addition, the rate of hydrolysis of the trans-2iQ. -A is faster than for the <7 -acetal (25). Because hydrolysis competes with acetalization during acetal synthesis, a high cis/trans ratio is favored. The stereochemistry of PVF and PVB resins has been studied by proton and carbon nmr spectroscopy (26—29). [Pg.450]

The kinetics of vinyl acetate emulsion polymeriza tion in the presence of alkyl phenyl ethoxylate surfactants of various chain lengths indicate that part of the emulsion polymerization occurs in the aqueous phase and part in the particles (115). A study of the emulsion polymerization of vinyl acetate in the presence of sodium lauryl sulfate reveals that a water-soluble poly(vinyl acetate)—sodium dodecyl sulfate polyelectrolyte complex forms, and that latex stabihty, polymer hydrolysis, and molecular weight are controlled by this phenomenon (116). [Pg.466]

Tetrahydrofuran (THF) is usually the solvent of choice for poly (acrylates). It is an excellent thermodynamic as well as kinetic solvent, its only drawback being its volatility and flammability. [Pg.540]

To derive the maximum amount of information about intranuclear and intemuclear activation for nucleophilic substitution of bicyclo-aromatics, the kinetic studies on quinolines and isoquinolines are related herein to those on halo-1- and -2-nitro-naphthalenes, and data on polyazanaphthalenes are compared with those on poly-nitronaphthalenes. The reactivity rules thereby deduced are based on such limited data, however, that they should be regarded as tentative and subject to confirmation or modification on the basis of further experimental study. In many cases, only a single reaction has been investigated. From the data in Tables IX to XVI, one can derive certain conclusions about the effects of the nucleophile, leaving group, other substituents, solvent, and comparison temperature, all of which are summarized at the end of this section. [Pg.331]

An alternating copolymer of a-methyl styrene and oxygen as an active polymer was recently reported [20]. When a-methyl styrene and AIBN are pressurized with O2, poly-a-methylstyreneperoxide is obtained. Polymerization kinetic studies have shown that the oligoperoxides mentioned above were as reactive as benzoyl peroxide, which is a commercial peroxidic initiator. Table 1 compares the overall rate constants of some oligoperoxides with that of benzoyl peroxide. [Pg.727]

Concerning the nature of electronic traps for this class of ladder polymers, we would like to recall the experimental facts. On comparing the results of LPPP to those of poly(para-phenylene vinylene) (PPV) [38] it must be noted that the appearance of the maximum current at 167 K, for heating rates between 0.06 K/s and 0.25 K/s, can be attributed to monomolecular kinetics with non-retrapping traps [26]. In PPV the density of trap states is evaluated on the basis of a multiple trapping model [38], leading to a trap density which is comparable to the density of monomer units and very low mobilities of 10-8 cm2 V-1 s l. These values for PPV have to be compared to trap densities of 0.0002 and 0.00003 traps per monomer unit in the LPPP. As a consequence of the low trap densities, high mobility values of 0.1 cm2 V-1 s-1 for the LPPPs are obtained [39]. [Pg.154]

Table 6. Kinetic parameters for the poly(A/St/Phen) (29)-MV2+ system [120]... Table 6. Kinetic parameters for the poly(A/St/Phen) (29)-MV2+ system [120]...
Fig. 7a, b. Kinetics of poly(p-nitrophenyl acrylate) chemical adsorption on aminopropyl-Aerosil at 25 °C in dimethylsulphoxide. Filled circles ester group content (pmol/g support), empty c/rc/ei p-nitrophenol release (pmol/g support), a — l%solution b — 5% solution [55]... [Pg.155]

Swarc,M. The Kinetics and Mechanism of N-carboxy-a-amino-acid Anhydride (NCA) Polymerization to Poly-amino Acids. Vol. 4, pp. 1—65. [Pg.161]

We also found the saturation kinetics for alkaline hydrolyses of 44 (PNPA), 3-nitro-4-acetoxybenzoic acid 56 (NABA), and 3-nitro-4-acetoxybenzenearsonie acid 57 (NABAA) in the presence of QPVP1025. If ester-polymer complex formation occurs prior to the attack of OH-, Eq. (5) holds, according to Bunton etal. 103 where K is the equilibrium association constant of polyelectrolyte (PE) and ester (S), and kt the first-order rate coefficients1035, PE, S, and P indicate the poly-... [Pg.159]

Shimidzu etal.111 studied the catalytic activity of poly (4(5)-vinylimidazole-co-acrylic add) 60 (PVIm AA) in hydrolyses of 3-acetoxy-N-trimethylanilinium iodide 61 (ANTI) and p-nitrophenylacetate 44 (PNPA). The hydrolyses of ANTI followed the Michaelis-Menten-type kinetics, and that of PNPA followed the second-order kinetics. Substrate-binding with the copolymer was strongest at an imidazole content of 30 mol%. The authors concluded that the carboxylic acid moiety not... [Pg.162]

We recently synthesized cationic polymers containing imidazole (e g. 68 (SZ811) and 69 (SZ11—3—3)] by reacting poly [N-(2,4-dinitrophenyl)-4-vinyl-pyridinium chloride] with histamine or histamine mixed with other amino derivatives ll8 The hydrolyses of neutral and anionic esters with the models followed saturation kinetics in alkaline media. [Pg.163]

Infrared spectroscopy. Due to experimental difficulties, infrared spectroscopy is used infrequently in these kinetic studies. However, continuous measurements have been carried out by Schumann28 in the study of the poly(ethylene terepthalate) synthesis. [Pg.57]

Kinetic studies on the bulk polyesterification of a,o-dicarboxy poly(hexamethylene adipate) with a,polymeric medium. Solomon s mechanism1 can be considered as reasonable. [Pg.76]


See other pages where Poly kinetics is mentioned: [Pg.2625]    [Pg.240]    [Pg.370]    [Pg.552]    [Pg.269]    [Pg.359]    [Pg.398]    [Pg.399]    [Pg.409]    [Pg.411]    [Pg.451]    [Pg.428]    [Pg.466]    [Pg.188]    [Pg.777]    [Pg.839]    [Pg.158]    [Pg.307]    [Pg.85]    [Pg.181]    [Pg.26]    [Pg.28]    [Pg.28]    [Pg.33]    [Pg.82]    [Pg.154]    [Pg.605]    [Pg.168]    [Pg.921]    [Pg.46]    [Pg.74]    [Pg.84]   


SEARCH



Degradation kinetics of poly

Degradation kinetics of poly (vinyl

Kinetics of poly

Kinetics poly degradation

Poly Growth kinetic coefficients

Poly crystallization kinetics

Poly dissolution kinetics

Poly first-order kinetic process

Poly kinetic mechanism

Poly kinetic parameters

Poly spherulite growth kinetics

Polymerization kinetics poly

© 2024 chempedia.info