Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly experimental results

The experimental results on poly(methacrylic acid) containing a small mole fraction of either 3-vinylperylene (PMAvPER, (30)) or lV-[12-(4-aminonaphthali-mide)]-2-methylacrylamide (PMAANI, (31)) show charge separation which is efficient for PMAvPER but not much for PMAANI. The quantum yields of charge separation for various chromophores covalently bound to PMA at pH 2.8 are summarized in Table 7. [Pg.91]

A comparison of values of yield stress for filled polymers of the same nature but of different molecular weights is of fundamental interest. An example of experimental results very clearly answering the question about the role of molecular weight is given in Fig. 9, where the concentration dependences of yield stress are presented for two filled poly(isobutilene)s with the viscosity differing by more than 103 times. As is seen, a difference between molecular weights and, as a result, a vast difference in the viscosity of a polymer, do not affect the values of yield stress. [Pg.78]

Differences in the structure of monocrystalline, threshold or bridge type polycrystalline adsorbents are to be manifested in the shape of adsorption - caused response of electrophysical characteristics [25]. The basic models of adsorption - induced response of monocrystalline and barrier poly crystal line adsorbents have been considered in Chapter 1. Here we describe various theoretical models of adsorption-induced response of polycrystalline adsorbents having intercrystalline contacts of the bridge type and their comparison with experimental results. [Pg.110]

Experimental determinations of the contributions above those predicted by the reference phantom network model have been controversial. Experiments of Rennar and Oppermann [45] on end-linked PDMS networks, indicate that contributions from trapped entanglements are significant for low degrees of endlinking but are not important when the network chains are shorter. Experimental results of Erman et al. [46] on randomly cross-linked poly(ethyl acrylate)... [Pg.350]

Although being qualitatively in agreement with experimental results, disagreements between experiment and theory remain. Besides the composition, /a, and the total degree of polymerization, N, all theoretical works refer to the segmental interaction parameter x This parameter can be estimated from a relationship to the solubility parameters. The ODT as a thermodynamic measure of the incompatibility was used to compare a set of symmetrically composed diblock copolymers from different hydrocarbons, polydimethyl-siloxane and poly(ethylene oxide) (PEO) [33]. While the behaviour of hydrocarbon diblock copolymers was successfully described by a consistent set of solubility parameters, this procedure failed for systems containing PEO. The... [Pg.146]

Staubli et al. (1991) offer an in depth analysis of the effects of sequence distribution on the Tg of poly(anhydride-co-imide)s and discuss the experimental results with respect to several applicable theoretical models... [Pg.193]

The aim of this paper is to offer experimental results for the molecular weight dependence of adsorption of polystyrene-sulfonate) onto a platinum plate from aqueous NaCl solution at 25 °C. Measurements of poly(styrenesulfonate) adsorption were carried out by ellipsometry. The dependences of molecular weight and added salt concentration on the thickness of the adsorbed layer and also the adsorbances of polymer and salt are examined. [Pg.40]

To fit the experimental results, it is necessary to fix the overall phase. This can be done, for example, by defining h as a real quantity (/ / = 0). The values found for the coefficients /, g, and h can then subsequently be used to calculate the values of the components of the second-order susceptibility, X(2). This is done in detail for a Langmuir-Blodgett film of a poly(isocyanide) in the following section. Note that both phase and magnitude of all tensor components are relative values. The absolute phase cannot be determined... [Pg.543]

A comparison of the theoretical and experimental results for the IPN system cross-poly(n-butyl acrylate) inter-cross polystrene is given in Table II [18,21]. The agreement between theory and experiment for this system as well as other systems was better than expected, noting the approximations required to obtain a usable result. It must be pointed out that Yeo et al. had to use spherical shapes for their mathematical treatment, even though it was already recognized that most of the domains were cylindrical. [Pg.275]

In this paper a generalized approach is presented to the derivation of H-H-S equations for multispecies polymers created by addition polymerization across single double bonds in the monomers. The special cases of copolymers and terpolymers are derived. This development is combined with experimental results to evaluate the numerical parameters in the equations for poly(styrene-acrylonitrile ) (SAN) in three separate solvents and for poly(styrene-maleic anhydride-methyl methacrylate) (S/HA/MM) in a single solvent. The three solvents in the case of SAN are dimethyl formamide (DMF), tetrahydrofuran (THF), and methyl ethyl ketone (MEK) and the solvent for S/HA/HH is HER. [Pg.264]

As a result of specific interactions, molecules of one component are surrounded by molecules of the second component in the segments of helix form. On the basis of these findings it is possible to assume that similar structures are formed during polymerization of methyl methacrylate in the presence of the isotactic template, or polymerization of methacrylic acid in the presence of poly(L-lysine). However, more experimental results are still needed. [Pg.125]

On hydrophilic surfaces, such as PVA or poly(HEMA), OH-groups of the materials are incorporated in the network structure of adsorbed water molecules (see Sect. 4.4). In consequence, the absolute value of Wj(3 — Wi1 is considered to become still smaller, where - owing to the stabilization of water molecules on the hydrophilic surface - the water-removing-process (reverse reaction of Eq. (2.6)) proceeds slowly. Many experiments were carried out with water-adsorbed hydrophilic surfaces, the behavior of which was time-dependent. In a similar way, the water removal from the proteins [Eq. (2.9)] is also considered to proceed slowly. Thus, we must be careful in considering experimental results in comparison with the data in Tables 3, 4 and 5. [Pg.13]

We compare Eq. (74) with the experimental results for two more stiff-chain polymers, PBLG and poly(p-phenylene terephthalamide) (PPTA). Since avail-... [Pg.143]

Chitosan-stabilized Au NPs can be selectively synthesized on surfaces like poly (dimethylsiloxane) (PDMS) films using HAuC14 as precursor. The computation of surface plasmon bands (SPBs) based on Mie theory and experimental results indicates that the particles are partially coated by chitosan. The proposed mechanism implies that chitosan acts as a reducing/stabilizing agent. Furthermore, PDMS films patterned with chitosan could induce localized synthesis of gold nanoparticles in regions capped with chitosan only [110]. [Pg.155]

The theoretical treatment of line widths and intramolecular dipole-dipole interactions leads to an exponential dependence of Av on x, with the exponent 0.25 (fourth root) if the length of the crosslink is less than the average chain length between crosslinks 138). In poly(dimethyl siloxane) gels the predicted exponent is found to be 0.75, but experimental results give slightly smaller values (about 0.67), probably due to the effects of chain entanglements in these particular networks u9). [Pg.49]


See other pages where Poly experimental results is mentioned: [Pg.587]    [Pg.638]    [Pg.131]    [Pg.486]    [Pg.893]    [Pg.49]    [Pg.453]    [Pg.707]    [Pg.709]    [Pg.18]    [Pg.25]    [Pg.162]    [Pg.544]    [Pg.554]    [Pg.562]    [Pg.88]    [Pg.429]    [Pg.615]    [Pg.151]    [Pg.86]    [Pg.40]    [Pg.45]    [Pg.638]    [Pg.35]    [Pg.147]    [Pg.278]    [Pg.19]    [Pg.118]    [Pg.363]    [Pg.458]    [Pg.462]    [Pg.177]    [Pg.66]    [Pg.522]    [Pg.455]    [Pg.30]   
See also in sourсe #XX -- [ Pg.31 , Pg.33 ]




SEARCH



Poly results

© 2024 chempedia.info