Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly equation

Likhtman, A. E., Graham, R. S. Simple constitutive equation for linear polymer melts derived from molecular theory Roh-poly equation./. Non-Newt. Fluid Mech. (2003) 114, pp. 1-12... [Pg.468]

Ihe Fock operator is an effective one-electron Hamiltonian for the electron in the poly-tiectronic system. However, written in this form of Equation (2.130), the Hartree-Fock... [Pg.73]

Simha equation), where a/b is the length/diameter ratio of these cigarshaped particles. Doty et al.t measure the intrinsic viscosity of poly(7-benzyl glutamate) in a chloroform-formamide solution and obtained (approximately) the following results ... [Pg.71]

Next let us examine an experimental test of the Avrami equation and the assortment of predictions from its various forms as summarized in Table 4.3. Figure 4.9 is a plot of ln[ln(l - 0)" ] versus In t for poly (ethylene terephtha-late) at three different temperatures. According to Eq. (4.35), this type of... [Pg.233]

The crystallization of poly(ethylene terephthalate) at different temperatures after prior fusion at 294 C has been observed to follow the Avrami equation with the following parameters applying at the indicated temperatures ... [Pg.266]

The time-temperature superpositioning principle was applied f to the maximum in dielectric loss factors measured on poly(vinyl acetate). Data collected at different temperatures were shifted to match at Tg = 28 C. The shift factors for the frequency (in hertz) at the maximum were found to obey the WLF equation in the following form log co + 6.9 = [ 19.6(T -28)]/[42 (T - 28)]. Estimate the fractional free volume at Tg and a. for the free volume from these data. Recalling from Chap. 3 that the loss factor for the mechanical properties occurs at cor = 1, estimate the relaxation time for poly(vinyl acetate) at 40 and 28.5 C. [Pg.269]

Combination and disproportionation are competitive processes and do not occur to the same extent for all polymers. For example, at 60°C termination is virtually 100% by combination for polyacrylonitrile and 100% by disproportionation for poly (vinyl acetate). For polystyrene and poly (methyl methacrylate), both reactions contribute to termination, although each in different proportions. Each of the rate constants for termination individually follows the Arrhenius equation, so the relative amounts of termination by the two modes is given by... [Pg.360]

The solute molecular weight enters the van t Hoff equation as the factor of proportionality between the number of solute particles that the osmotic pressure counts and the mass of solute which is known from the preparation of the solution. The molecular weight that is obtained from measurements on poly disperse systems is a number average quantity. [Pg.552]

Halogen Displacement. Poly(phenylene oxide)s can also be prepared from 4-halo-2,6-disubstituted phenols by displacement of the halogen to form the ether linkage (48). A trace of an oxidizing agent or free radical initiates the displacement reaction. With 4-bromo-2,6-dimethylphenol, the reaction can be represented as in equation 10 ... [Pg.329]

Blends of poly(vinyl chloride) (PVC) and a-methylstyrene—acrylonitrile copolymers (a-MSAN) exhibit a miscibiUty window that stems from an LCST-type phase diagram. Figure 3 shows how the phase-separation temperature of 50% PVC blends varies with the AN content of the copolymer (96). This behavior can be described by an appropriate equation-of-state theory and interaction energy of the form given by equation 9. [Pg.413]

The thermal glass-transition temperatures of poly(vinyl acetal)s can be determined by dynamic mechanical analysis, differential scanning calorimetry, and nmr techniques (31). The thermal glass-transition temperature of poly(vinyl acetal) resins prepared from aliphatic aldehydes can be estimated from empirical relationships such as equation 1 where OH and OAc are the weight percent of vinyl alcohol and vinyl acetate units and C is the number of carbons in the chain derived from the aldehyde. The symbols with subscripts are the corresponding values for a standard (s) resin with known parameters (32). The formula accurately predicts that resin T increases as vinyl alcohol content increases, and decreases as vinyl acetate content and aldehyde carbon chain length increases. [Pg.450]

A second type of soHd ionic conductors based around polyether compounds such as poly(ethylene oxide) [25322-68-3] (PEO) has been discovered (24) and characterized. These materials foUow equations 23—31 as opposed to the electronically conducting polyacetylene [26571-64-2] and polyaniline type materials. The polyethers can complex and stabilize lithium ions in organic media. They also dissolve salts such as LiClO to produce conducting soHd solutions. The use of these materials in rechargeable lithium batteries has been proposed (25). [Pg.510]

Polyheterocycles. Heterocychc monomers such as pyrrole and thiophene form hiUy conjugated polymers (4) with the potential for doped conductivity when polymerization occurs in the 2, 5 positions as shown in equation 6. The heterocycle monomers can be polymerized by an oxidative coupling mechanism, which can be initiated by either chemical or electrochemical means. Similar methods have been used to synthesize poly(p-phenylenes). [Pg.36]

Step 1. Calculate the poly tropic exponent using Equation 2.71. [Pg.166]

Using the new poly tropic exponent, calculate the discharge temperature using Equation 5.16. [Pg.169]

Head coefficient, 156 Head equation, adiabatic, 3 t Head equation, poly tropic, I Head, centrifugal, 156 Head, reciprocating, 58 Heat run test (dry), 413 Helical compressor, 5, 7 adiabatic efficiency, Itil applicalion mnge, 7. ly asymmetric profile, 96 bearings, 116 capacity control, 95 casings, 114 circular profile, 95 cooling, I i 1 discharge temperature (dry), I 17... [Pg.546]

Wi is the weight fraction of the elastomer, W2 the tackifier, W3 a further compatible additive, such as an oil, and so forth, for the remaining components in the formulated PSA. Application of the Fox equation to the poly (/-butylstyrene) tackified natural rubber adhesive (cited above) gives a value of —11°C, in good agreement with the interpolated value of — 13°C. [Pg.476]

Alkyl and aryl isocyanates react with anhydrous hydrogen fluonde to give carbamyl fluorides [J, 55], the more conveniently handled pyridinium poly(hydro-gen fluoride) reagent can also be used, although the yields tend to be poorer [9] (equation 10). [Pg.59]

Diazoketones [57] and esters [5S] react with hydrogen fluoride in organic solvents to give a-fluoroketones or esters, pyndinium poly(hydrogen fluoride) offers a convenient medium for the reaction (equation 13) [9]... [Pg.60]

Oiazo ketones and esters react with A -halosuccinimides in pyridinium poly(hydrogen fluoride) to give geminal halofluoro denvatives [9] (equation 21)... [Pg.68]

Elemental fluorine in the absence of hydrogen fluoride and water produces fluoroxypoly- and fluoroxyperfluoroalkanes from sodium pentafluoropropanoate [243] and various poly- and perfluoroalkanoyl fluorides [244 (equation 129)... [Pg.253]

Replacement of hydrogen with chlorine adjacent to the nitrogen in poly-fluoroalkylamines occurs in excellent yield [39 40 (equations 21 and 22)... [Pg.373]

Terminally unsaturated fluonnated alkenoic acids can be obtained from poly-fluorocycloalkenes by reaction with potassium hydroxide m rert-butyl alcohol [24] (equation 26) The use of a tertiary alcohol is critical because primary and secondar y alcohols lead to ethers of the cycloalkenes The use of a polar aprotic solvent such as diglyme generates enols of diketones [26] (equation 27) The compound where... [Pg.429]

Methyl 2-methoxy-2-polyfluoroalkyl-2-fluoroacetates, generated from poly-fluoroalkyltrifluoroethylene oxides and methanol, give, on heating with concentrated or fuming sulfuric acid, methyl polyfluoroalkylglyoxylates [29] (equation 32). [Pg.431]


See other pages where Poly equation is mentioned: [Pg.375]    [Pg.375]    [Pg.152]    [Pg.80]    [Pg.130]    [Pg.316]    [Pg.319]    [Pg.399]    [Pg.411]    [Pg.411]    [Pg.481]    [Pg.466]    [Pg.482]    [Pg.493]    [Pg.36]    [Pg.112]    [Pg.402]    [Pg.41]    [Pg.58]    [Pg.67]    [Pg.266]    [Pg.394]    [Pg.400]    [Pg.714]    [Pg.210]    [Pg.387]   
See also in sourсe #XX -- [ Pg.140 ]

See also in sourсe #XX -- [ Pg.34 ]




SEARCH



© 2024 chempedia.info