Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly behavior

A great many polymers appear to form films having a flat molecular configuration. Thus various polyesters [7] gave extrapolated areas of about 2.5 m /mg corresponding to about the calculated 60-70 area per segment, or mono-layer Sickness of 3-5 A. A similar behavior was noted for poly(vinyl acetate)... [Pg.539]

Wanka G, Floffman FI and Ulbrict W 1990 The aggregation behavior of poly-(oxyethylene)-poly(oxypropylene)-poly-(oxyethylene)-block copolymers in aqueous solutions Colloid Polym. Sc/. 268 101-17... [Pg.2606]

As we did in the case of relaxation, we now compare the behavior predicted by the Voigt model—and, for that matter, the Maxwell model—with the behavior of actual polymer samples in a creep experiment. Figure 3.12 shows plots of such experiments for two polymers. The graph is on log-log coordinates and should therefore be compared with Fig. 3.11b. The polymers are polystyrene of molecular weight 6.0 X 10 at a reduced temperature of 100°C and cis-poly-isoprene of molecular weight 6.2 X 10 at a reduced temperature of -30°C. [Pg.170]

With T as the independent variable, the transition between glassy and rubbery behavior can be read directly at Tg. Note that Tg is about 100° lower for poly(methyl acrylate) than for poly(methyl methacrylate). [Pg.182]

Materials that typify thermoresponsive behavior are polyethylene—poly (ethylene glycol) copolymers that are used to functionalize the surfaces of polyethylene films (smart surfaces) (20). When the copolymer is immersed in water, the poly(ethylene glycol) functionaUties at the surfaces have solvation behavior similar to poly(ethylene glycol) itself. The abiUty to design a smart surface in these cases is based on the observed behavior of inverse temperature-dependent solubiUty of poly(alkene oxide)s in water. The behavior is used to produce surface-modified polymers that reversibly change their hydrophilicity and solvation with changes in temperatures. Similar behaviors have been observed as a function of changes in pH (21—24). [Pg.250]

Thermoplasticity. High molecular weight poly(ethylene oxide) can be molded, extmded, or calendered by means of conventional thermoplastic processing equipment (13). Films of poly(ethylene oxide) can be produced by the blown-film extmsion process and, in addition to complete water solubiUty, have the typical physical properties shown in Table 3. Films of poly(ethylene oxide) tend to orient under stress, resulting in high strength in the draw direction. The physical properties, melting behavior, and crystallinity of drawn films have been studied by several researchers (14—17). [Pg.341]

SolubiHty parameters of 19.3, 16.2, and 16.2 (f /cm ) (7.9 (cal/cm ) ) have been determined for polyoxetane, po1y(3,3-dimethyl oxetane), and poly(3,3-diethyloxetane), respectively, by measuring solution viscosities (302). Heat capacities have been determined for POX and compared to those of other polyethers and polyethylene (303,304). The thermal decomposition behavior of poly[3,3-bis(ethoxymethyl)oxetane] has been examined (305). [Pg.368]

Blends of poly(vinyl chloride) (PVC) and a-methylstyrene—acrylonitrile copolymers (a-MSAN) exhibit a miscibiUty window that stems from an LCST-type phase diagram. Figure 3 shows how the phase-separation temperature of 50% PVC blends varies with the AN content of the copolymer (96). This behavior can be described by an appropriate equation-of-state theory and interaction energy of the form given by equation 9. [Pg.413]

Poly(A/-vinyl-2-pyrrohdinone) (PVP) is undoubtedly the best-characterized and most widely studied A/-vinyl polymer. It derives its commercial success from its biological compatibiUty, low toxicity, film-forming and adhesive characteristics, unusual complexing abiUty, relatively inert behavior toward salts and acids, and thermal and hydrolytic stabiUty. [Pg.527]

The most commonly used polymers are cellulose acetate phthalate [9004-38-0] (CAP), poly(vinyl acetate phthalate) [34481-48-6] (PVAP), hydroxypropylmethyl-ceUulosephthalate [71138-97-1] (HPMCP), and polymethacrylates (111) (see Cellulose esters). Acrylate copolymers are also available (112). Eigure 11 shows the dissolution behavior of some commercially available enteric materials. Some manufacturers supply grades designed to dissolve at specific pH values with increments as small as 0.5 pH unit (113). [Pg.148]

Many substances show carrier behavior, and some have found more acceptance than others for various reasons, eg, availabiUty, cost, environmental concerns, ease of handling, odor, etc. Most carriers are aromatic compounds, and have similar solubiUty parameters to the poly(ethylene terephthalate) fibers and to some disperse dyes (3). [Pg.265]

Molecular weight determinations of ECH—EO, ECH—AGE, ECH—EO—AGE, ECH—PO—AGE, and PO—AGE have not been reported. Some solution studies have been done on poly(propylene oxide), and these may approximate solution behavior of the PO—AGE copolymer (33,34). [Pg.555]

The first generalization is illustrated by the behavior of the 2- and 4-vs. the 3-derivatives of pyridine, the second by the reactivity of 4- vs. 2-substituted pyridines, the third by the relation of 4- vs. 2-derivatives of pyrimidine, and the fourth by the appreciable reactivity of 3-substituted pyridines or 5-substituted pyrimidines compared to that of their benzene analogs. Various combinations of azine-nitrogens in other poly-azines supply further examples. Theoretical aspects of (1), (2) and (3) are discussed in Section II, B, 2. The effect involved in (4) is believed to be more the result of the inductive stabilization of an adjacent negative chaise in the transition state (cf. 251) than of the electron deficiency created in the ground state (cf. 252). The quantitative relation between inductive stabihzation and resonance stabilization is not precisely defined by available data. However, a... [Pg.263]

The advantage of the activated displacement polymerization is the facile incorporation of different and unconventional structural units in the polymer backbone. Most of the heteroarylene activated polyethers prepared by this route are soluble in many organic solvents. The solubility behavior of new polyethers is shown in Table 8. In contrast to many polyphenylenequi-noxalines, poly(aryl ether phenylquinoxalines) prepared by the quionoxaline activated displacement reaction are soluble in NMP. Solubility in NMP is important since it is frequently used for polymer processing in the microelectronics industry [27]. [Pg.50]


See other pages where Poly behavior is mentioned: [Pg.482]    [Pg.540]    [Pg.551]    [Pg.95]    [Pg.234]    [Pg.240]    [Pg.421]    [Pg.329]    [Pg.329]    [Pg.330]    [Pg.298]    [Pg.151]    [Pg.237]    [Pg.281]    [Pg.303]    [Pg.343]    [Pg.359]    [Pg.409]    [Pg.411]    [Pg.411]    [Pg.192]    [Pg.228]    [Pg.428]    [Pg.350]    [Pg.474]    [Pg.481]    [Pg.191]    [Pg.209]    [Pg.413]    [Pg.557]    [Pg.566]    [Pg.576]    [Pg.577]    [Pg.327]    [Pg.332]    [Pg.56]    [Pg.167]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Dielectric Relaxational Behavior of Poly(diitaconate)s

Mechanical relaxation behavior poly

Poly , behavior during

Poly , behavior during characterization

Poly , glass transition behavior

Poly , liquid-crystalline behavior

Poly , melting behavior

Poly , thermochromic behavior

Poly crystallization behavior

Poly degradation behavior

Poly degradation behavior monomer

Poly degradation behavior structure

Poly dielectric behavior

Poly dielectric loss behavior

Poly electrochemical behavior

Poly electrochromic behavior

Poly fatigue behavior

Poly morphological behavior

Poly phase behavior

Poly preferential adsorption behavior

Poly redox behavior

Poly rheological behavior

Poly self-organizing behavior

Poly solubility behavior

Poly swelling behavior

Poly viscoelastic behavior

Stress-strain behavior poly

© 2024 chempedia.info