Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pollutant sulfuric acid

Figure 2.3 Illustration of the definition of environmental chemistry by the example of pollutant sulfuric acid formed by the oxidation of sulfur dioxide generated during the combustion of sulfur-containing coal. [Pg.62]

Amdur MO (1989) Health effects of air pollutants Sulfuric acid, the old and the new. Environmental Health Perspectives 81 109-113 (discussion 121-122). [Pg.2509]

Historically, soda ash was produced by extracting the ashes of certain plants, such as Spanish barilla, and evaporating the resultant Hquor. The first large scale, commercial synthetic plant employed the LeBlanc (Nicolas LeBlanc (1742—1806)) process (5). In this process, salt (NaCl) reacts with sulfuric acid to produce sodium sulfate and hydrochloric acid. The sodium sulfate is then roasted with limestone and coal and the resulting sodium carbonate—calcium sulfide mixture (black ash) is leached with water to extract the sodium carbonate. The LeBlanc process was last used in 1916—1917 it was expensive and caused significant pollution. [Pg.522]

The indirect hydration, also called the sulfuric acid process, practiced by the three U.S. domestic producers, was the only process used worldwide until ICI started up the first commercial direct hydration process in 1951. Both processes use propylene and water as raw materials. Early problems of high corrosion, high energy costs, and air pollution using the indirect process led to the development of the direct hydration process in Europe. However, a high purity propylene feedstock is required. In the indirect hydration process, C -feedstock streams from refinery off-gases containing only 40—60 wt % propylene are often used in the United States. [Pg.107]

The bottoms from the stripper (40—60 wt % acid) are sent to an acid reconcentration unit for upgrading to the proper acid strength and recycling to the reactor. Because of the associated high energy requirements, reconcentration of the diluted sulfuric acid is a cosdy operation. However, a propylene gas stripping process, which utilizes only a small amount of added water for hydrolysis, has been described (63). In this modification, the equiUbrium quantity of isopropyl alcohol is stripped so that acid is recycled without reconcentration. Kquilibrium is attained rapidly at 50°C and isopropyl alcohol is removed from the hydrolysis mixture. Similarly, the weak sulfuric acid process minimizes the reconcentration of the acid and its associated corrosion and pollution problems. [Pg.108]

Isopropyl Alcohol. Propylene may be easily hydrolyzed to isopropyl alcohol. Eady commercial processes involved the use of sulfuric acid in an indirect process (100). The disadvantage was the need to reconcentrate the sulfuric acid after hydrolysis. Direct catalytic hydration of propylene to 2-propanol followed commercialization of the sulfuric acid process and eliniinated the need for acid reconcentration, thus reducing corrosion problems, energy use, and air pollution by SO2 and organic sulfur compounds. Gas-phase hydration takes place over supported oxides of tungsten at 540 K and 25... [Pg.129]

Sulfuric acid may be produced by the contact process from a wide range of sulfur-bearing raw materials by several different process variants, depending largely on the raw material used. In some cases sulfuric acid is made as a by-product of other operations, primarily as an economical or convenient means of minimising air pollution (qv) or disposing of unwanted by-products. [Pg.183]

In the early 1970s, air pollution requirements led to the adoption of the double contact or double absorption process, which provides overall conversions of better than 99.7%. The double absorption process employs the principle of intermediate removal of the reaction product, ie, SO, to obtain favorable equiUbria and kinetics in later stages of the reaction. A few single absorption plants are stiU being built in some areas of the world, or where special circumstances exist, but most industriali2ed nations have emission standards that cannot be achieved without utili2ing double absorption or tad-gas scmbbers. A discussion of sulfuric acid plant air emissions, control measures, and emissions calculations can be found in Reference 98. [Pg.183]

Double-Absorption Plants. In the United States, newer sulfuric acid plants ate requited to limit SO2 stack emissions to 2 kg of SO2 per metric ton of 100% acid produced (4 Ib /short ton Ib = pounds mass). This is equivalent to a sulfur dioxide conversion efficiency of 99.7%. Acid plants used as pollution control devices, for example those associated with smelters, have different regulations. This high conversion efficiency is not economically achievable by single absorption plants using available catalysts, but it can be attained in double absorption plants when the catalyst is not seriously degraded. [Pg.186]

Catalytic uses result in Htde consumption or loss of vanadium. The need to increase conversion efficiency for pollution control from sulfuric acid plants, which require more catalyst, and expanded fertilizer needs, which require more acid plants, were factors in the growth of vanadium catalyst requirements during the mid-1970s. Use was about evenly divided between initial charges to new plants and replacements or addition to existing plants. [Pg.394]

Air pollution problems and labor costs have led to the closing of older pyrometaHurgical plants, and to increased electrolytic production. On a worldwide basis, 77% of total 2inc production in 1985 was by the electrolytic process (4). In electrolytic 2inc plants, the calcined material is dissolved in aqueous sulfuric acid, usually spent electrolyte from the electrolytic cells. Residual soHds are generally separated from the leach solution by decantation and the clarified solution is then treated with 2inc dust to remove cadmium and other impurities. [Pg.386]

Air or biological oxidation of pyrite leads to sulfate formation and dilute sulfuric acid in the mine drainage. This pollutes streams and the water supphes into which the mine water is drained. Means of controlling this problem are under study. [Pg.233]

The major effects of air pollution on fabrics are soiling and loss of tensile strength. Sulfur oxides are considered to cause the greatest loss of tensile strength. The most widely publicized example of this type of problem has been damage to women s nylon hose by air pollution, described in newspaper accounts. The mechanism is not understood, but it is postulated that fine droplets of sulfuric acid aerosol deposit on the very thin nylon... [Pg.130]

An acid dipping operation for metal parts involves the use of a 75% strength sulfuric acid solution. Develop recommendations for the Maximum Achievable Control Technology for controlling the air emissions from such an operation. Hint Take some time to look at the EPA Web sites dealing with MACT standards and pollution prevention. [Pg.52]

Implementation of cleaner production processes and pollution prevention measures can yield both economic and environmental benefits. The following production-related targets can be achieved by measures such as those described above. The numbers relate to the production processes before the addition of pollution control measures. In sulfuric acid plants that use the double-contact, double absorption process, emissions levels of 2 to 4 kilograms of sulfur dioxide... [Pg.69]

Closed drain headers are normally provided for safe drainage of equipment containing severely toxic, corrosive, pollutant or high cost chemicals (e.g., phenol, sulfuric acid, monoethanolamine, sulfur dioxide, catacarb) where there is an appreciable inventory in a number of processing vessels in a plant. The header should be at least 50 mm in diameter, and should be tied into the major vessels and equipment with 25 mm minimum size connections (20 mm is considered adequate for pumps). The header may be routed to a gravity drain drum (with recovery to the process by pump or gas pressurization), or to a pumpout pump returning to the process, or in the case of sulfuric acid, to an acid blowdown drum. [Pg.223]

Since the majority of middle distillates are used as a fuel, combustion of these products will contribute to SO2/SO3 air pollution and acid rain. However, in catalytic processes of petroleum fractions Sulfur levels are also important. Lor instance, quantities... [Pg.395]

The most efficient processes in Table I are for steel and alumintim, mainly because these metals are produced in large amounts, and much technological development has been lavished on them. Magnesium and titanium require chloride intermediates, decreasing their efficiencies of production lead, copper, and nickel require extra processing to remove unwanted impurities. Sulfide ores produce sulfur dioxide (SO2), a pollutant, which must be removed from smokestack gases. For example, in copper production the removal of SO, and its conversion to sulfuric acid adds up to 8(10) JA g of additional process energy consumption. In aluminum production disposal of waste ciyolite must be controlled because of possible fiuoride contamination. [Pg.772]

Smelting iron ores produces large amounts of sulfur dioxide, which is catalytically oxidized to sulfur trioxide for sulfuric acid production. This process is declining due to pollution control measures and the presence of some impurities in the product acid. [Pg.114]


See other pages where Pollutant sulfuric acid is mentioned: [Pg.281]    [Pg.18]    [Pg.481]    [Pg.111]    [Pg.283]    [Pg.123]    [Pg.144]    [Pg.193]    [Pg.476]    [Pg.426]    [Pg.1440]    [Pg.1541]    [Pg.2173]    [Pg.68]    [Pg.104]    [Pg.37]    [Pg.82]    [Pg.84]    [Pg.127]    [Pg.143]    [Pg.279]    [Pg.1052]    [Pg.41]    [Pg.105]    [Pg.132]    [Pg.135]    [Pg.143]    [Pg.144]    [Pg.263]    [Pg.698]    [Pg.699]    [Pg.3]   
See also in sourсe #XX -- [ Pg.1061 ]




SEARCH



Sulfuric acid smog pollutant

© 2024 chempedia.info