Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polar solvent model

It should be noticed that nonpolar solvents exhibit solvation dynamics, which are qualitatively similar to what has been said about polar solvents. Modeling these effects is not trivial, because the dielectric response of solvents cannot be used as an empirical input [104]. [Pg.51]

Van der Zwan G and Hynes J T 1982 Dynamical polar solvent effects on solution reactions A simple continuum model J. Chem. Phys. 76 2993-3001... [Pg.866]

The explicit definition of water molecules seems to be the best way to represent the bulk properties of the solvent correctly. If only a thin layer of explicitly defined solvent molecules is used (due to hmited computational resources), difficulties may rise to reproduce the bulk behavior of water, especially near the border with the vacuum. Even with the definition of a full solvent environment the results depend on the model used for this purpose. In the relative simple case of TIP3P and SPC, which are widely and successfully used, the atoms of the water molecule have fixed charges and fixed relative orientation. Even without internal motions and the charge polarization ability, TIP3P reproduces the bulk properties of water quite well. For a further discussion of other available solvent models, readers are referred to Chapter VII, Section 1.3.2 of the Handbook. Unfortunately, the more sophisticated the water models are (to reproduce the physical properties and thermodynamics of this outstanding solvent correctly), the more impractical they are for being used within molecular dynamics simulations. [Pg.366]

Attempts have been made to distinguish between these theories on the basis of the AH° and values anticipated for the two theories, but it may be illusory to think of them as independent alternatives. The eavity model has been criticized on the basis that it eannot account for certain observations such as the denaturing effect of urea, but it must be noted that the cavity theory includes not only the cavity term AAy, but also a term (or terms) for the interaction of the solutes and the solvent. A more eogent objeetion might be to the extension of the macroseopic concepts of surface area and tension to the molecular scale. A demonstration of the validity of the cavity concept has been made with silanized glass beads, which aggregate in polar solvents and disperse in nonpolar solvents. [Pg.396]

Kosower made the first use of this phenomenon for measuring solvent polarity. The model process is the absorption transition of l-ethyl-4-carbomethoxy-pyridinium iodide, 7 ... [Pg.436]

Tomasi s Polarized Continuum Model (PCM) defines the cavity as the union of a series of interlocking atomic spheres. The effect of polarization of the solvent continuum is represented numerically it is computed by numerical integration rather... [Pg.237]

Next, we will consider the vibrational frequencies of formaldehyde in acetonitrile, using the Onsager SCRF model and the SCIPCM model. Acetonitrile is a highly polar solvent, with an e value of 35.9. In order to predict the vibrational frequencies, we ll first need to optimize the structure for formaldehyde in this medium. Thus, we ll be running these jobs ... [Pg.241]

As the plot of AE indicates, the energy difference between the two forms decreases in more polar solvents, and becomes nearly zero in acetonitrile. The left plot illustrates the fact that the IPCM model (at the B3LYP/6-31+G(d) level of theory) does a much better job of reproducing the observed solvent effect than the two Onsager SCRF models. In contrast, the Onsager model at the MP2 level treats the solvated systems more accurately than it does the gas phase system, leading to a poorer value for the solvent effect. ... [Pg.243]

The stereoselectivity of an addition reaction is considerably lower when the reactions are conducted in polar solvents, complexing additives such as /V./V,A. A, -tetramethylethylenedi-arnine arc used, or when the stereogenic center carries a methoxy group instead of a hydroxy group. This behavior is explained as competition between the cyclic model and a dipolar model, proposed for carbonyl compounds bearing a polar substituent such as chlorine with a highly... [Pg.2]

Although the LD model is clearly a rough approximation, it seems to capture the main physics of polar solvents. This model overcomes the key problems associated with the macroscopic model of eq. (2.18), eliminating the dependence of the results on an ill-defined cavity radius and the need to use a dielectric constant which is not defined properly at a short distance from the solute. The LD model provides an effective estimate of solvation energies of the ionic states and allows one to explore the energetics of chemical reactions in polar solvents. [Pg.51]

Marriott and Topsom have recently developed theoretical scales of substituent field and resonance parameters. The former correspond to the traditional inductive parameters but these authors are firm believers in the field model of the so-called inductive effect and use the symbol The theoretical substituent field effect scale is based on ab initio molecular orbital calculations of energies or electron populations of simple molecular systems. The results of the calculations are well correlated with Op values for a small number of substituents whose Op values on the various experimental scales (gas-phase, non-polar solvents, polar solvents) are concordant, and the regression equations are the basis for theoretical Op values of about 50 substituents. These include SOMe and S02Me at 0.37 and 0.60 respectively, which agree well with inherent best values in the literature of 0.36 and 0.58. However, it should be noted that a, for SOMe is given as 0.50 by Ehrenson and coworkers . [Pg.517]

Due to some stability concerns with the N-Cbz group of 8 at high temperatures, compound 25 was used as a model substrate for the reaction. Substrate 25 was irradiated for 2 min (internal temperature reached 185 °C) in a variety of solvents and all thermal reactions reached >95% conversion (Table 6.1). Both aprotic polar solvents (entries 6 and 9) and protic polar solvent (entry 7) gave poor assay yields of product 26. With nonpolar solvents (entry 10) such as o-xylene and xylenes, the rearrangement reaction provided the highest assay yield and proved to be the best solvent choice [9e],... [Pg.170]

Where the + — terms refer to / an type excitations and the to a n - v type transition. These absorptions occur at longer wavelengths than the related model compounds (benzene and dimethylamine for Michler s ketone), have a high intensity, emax 104 liter/mole-cm, a small singlet-triplet splitting, and undergo a red shift of the absorption on going to a more polar solvent. [Pg.315]

Furthermore, the mechanism shown in Figure 12.1 considers only the all-tnmv-carotcnoid form as the initial compound however, although the all-tran.v-isomer predominates, d.v-isomcrs are also commonly found in model solutions and even more frequently in food systems, since these isomers are in equilibrium in the solution. Therefore, the initial carotenoid system often contains a mixture of isomers, whose composition changes according to the carotenoid structure, solvent, and heat treatment. For example, the isomerization rate of P-carotene is higher in nonpolar solvents, e.g., petroleum ether and toluene, than in polar solvents (Zechmeister 1944). [Pg.230]

The substituted hydroxylamine C NOPP from reaction 7) can take part in various dark reactions, even at ambient temperature. From a study of the low molecular weight model I in the liquid phase, two decomposition pathways are possible (reaction 8) (12). The products from the disproportionation reaction 8a were only observed in the absence of a radical trap such as O2. In a given solvent ks kaa-Uo (solvent air saturated and degassed respectively). Both k8a and ke were found to increase by an order of magnitude on going from a non-polar solvent (iso-octane) to a polar solvent (methanol or tert.-butyl hydro peroxide, BuOOH). [Pg.55]


See other pages where Polar solvent model is mentioned: [Pg.855]    [Pg.896]    [Pg.896]    [Pg.2585]    [Pg.613]    [Pg.66]    [Pg.77]    [Pg.140]    [Pg.141]    [Pg.203]    [Pg.68]    [Pg.517]    [Pg.49]    [Pg.55]    [Pg.94]    [Pg.396]    [Pg.673]    [Pg.236]    [Pg.195]    [Pg.197]    [Pg.110]    [Pg.40]    [Pg.49]    [Pg.105]    [Pg.270]    [Pg.267]    [Pg.278]    [Pg.319]    [Pg.488]    [Pg.203]    [Pg.215]    [Pg.259]    [Pg.276]    [Pg.475]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Model polarization

Modeling solvents

Numerical simulations of solvation in simple polar solvents The simulation model

Polar solvents

Polarity, solvent

Polarity/polarization solvent

Polarization solvent

Solvent Polarization Fluctuation Model

Solvent model

Solvent models model

Solvent polar solvents

Solvent polarity modelling

Solvent polarity modelling

The spur model in polar solvents

© 2024 chempedia.info