Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

IPCM model

The Isodensity PCM (IPCM) model defines the cavity as an isodensity surface of the molecule. This isodensity is determined by an iterative process in which an SCF cycle is performed and converged using the current isodensity cavity. The resultant wavefunction is then used to compute an updated isodensity surface, and the cycle is repeated until the cavity shape no longer changes upon completion of the SCF. [Pg.238]

We ran an SCRF single point energy calculation for gauche dichloroethane conformers in cyclohexane (e=2.0), using the Onsager model at the Hartree-Fock and MP2 levels of theory (flfl=3.65) and using the IPCM model at the B3LYP level. The 6-31+G(d) basis set was used for all jobs. We also ran gas phase calculations for both conformations at the same model chemistries, and an IPCM calculation for the trans conformation (SCRF=Dipole calculations are not necessary for the trans conformation since it has no dipole moment). [Pg.240]

As the plot of AE indicates, the energy difference between the two forms decreases in more polar solvents, and becomes nearly zero in acetonitrile. The left plot illustrates the fact that the IPCM model (at the B3LYP/6-31+G(d) level of theory) does a much better job of reproducing the observed solvent effect than the two Onsager SCRF models. In contrast, the Onsager model at the MP2 level treats the solvated systems more accurately than it does the gas phase system, leading to a poorer value for the solvent effect. ... [Pg.243]

We ran an SCRF single point energy calculation for gauche dichloroethane conformers in cydohexane ( =2.0), using the Onsager model at the Hartree-Fock and MP2 levels of theory (oo=3.65) and using the IPCM model at the B3LYP level. The... [Pg.147]

The original PCM method uses a cavity made of spherical regions around each atom. The isodensity PCM model (IPCM) uses a cavity that is defined by an isosurface of the electron density. This is defined iteratively by running SCF calculations with the cavity until a convergence is reached. The self-consistent isodensity PCM model (SCI-PCM) is similar to IPCM in theory, but different in implementation. SCI-PCM calculations embed the cavity calculation in the SCF procedure to account for coupling between the two parts of the calculation. [Pg.212]

J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian and M. J. Frisch, Solvent Effects. 5. The Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on Ab Initio Reaction Field Calculations, J. Phys. Chem., submitted (1996). [Discusses the IPCM SCRF model.]... [Pg.248]

Over the years, many workers have addressed the problem of choice of cavity and the reaction field. Tomasi s polarized continuum model (PCM) defines the cavity as a series of interlocking spheres. The isodensity PCM (IPCM) defines the cavity as an isodensity surface of the molecule. This isodensity surface is determined iteratively. The self-consistent isodensity polarized continuum model (SQ-PCM) gives a further refinement in that it allows for a full coupling between the cavity shape and the electron density. [Pg.259]

In the IPCM calculations, the molecule is contained inside a cavity within the polarizable continuum, the size of which is determined by a suitable computed isodensity surface. The size of this cavity corresponds to the molecular volume allowing a simple, yet effective evaluation of the molecular activation volume, which is not based on semi-empirical models, but also does not allow a direct comparison with experimental data as the second solvation sphere is almost completely absent. The volume difference between the precursor complex Be(H20)4(H20)]2+ and the transition structure [Be(H20)5]2+, viz., —4.5A3, represents the activation volume of the reaction. This value can be compared with the value of —6.1 A3 calculated for the corresponding water exchange reaction around Li+, for which we concluded the operation of a limiting associative mechanism. In the present case, both the nature of [Be(H20)5]2+ and the activation volume clearly indicate the operation of an associative interchange mechanism (156). [Pg.536]

The weakest point of our approach is the treatment of the bulk solvent. The energies derived from an implicit solvent model like IPCM are mainly based on energy calculations on gas-phase structures and effects of explicit solvent molecules are not included. [Pg.536]

While the MP2(full)/6-311+G 7/B3LYP/6-311+G energies show typical discrepancies, the application of the IPCM- and CPCM-solvent models dramatically lowers the energy for the intermediate and the transition states. The barriers of 2.8 and 1.8kcalmol 1 corroborate the experimental findings for an efficient formation of a water coordinated Li+ complex. [Pg.549]

In addition to SMx and the cluster-continuum model, other continuum models have also been used to study reactions in liquids, including the polarized continuum model [133-135] (PCM), the conductor-like screening model (COSMO [136] and COSMO-RS [137,138]), the generalized COSMO [139] (GCOSMO) model, conductorlike PCM [140] (CPCM), and isodensity PCM [141] (IPCM). [Pg.352]

Alternatively, reaction field calculations with the IPCM (isodensity surface polarized continuum model) [73,74] can be performed to model solvent effects. In this approach, an isodensity surface defined by a value of 0.0004 a.u. of the total electron density distribution is calculated at the level of theory employed. Such an isodensity surface has been found to define rather accurately the volume of a molecule [75] and, therefore, it should also define a reasonable cavity for the soluted molecule within the polarizable continuum where the cavity can iteratively be adjusted when improving wavefunction and electron density distribution during a self consistent field (SCF) calculation at the HF or DFT level. The IPCM method has also the advantage that geometry optimization of the solute molecule is easier than for the PISA model and, apart from this, electron correlation effects can be included into the IPCM calculation. For the investigation of Si compounds (either neutral or ionic) in solution both the PISA and IPCM methods have been used. [41-47]... [Pg.241]

Recognizing that the continuum solvent calculations are the weakest link in pKa calculations, Ho and Coote [3] used the CPCM (with UAKS and UAFH radii), SM6, IPCM, and COSMO-RS models to predict pKa values for a common data set of neutral organic and inorganic acids. They used four different thermodynamic cycles, and in general found that the COSMO-RS, CPCM, and SM6 models worked best depending on the thermodynamic cycle used. We turn to a discussion of thermodynamic cycles in the next section. [Pg.130]


See other pages where IPCM model is mentioned: [Pg.241]    [Pg.299]    [Pg.306]    [Pg.230]    [Pg.54]    [Pg.10]    [Pg.323]    [Pg.335]    [Pg.140]    [Pg.241]    [Pg.299]    [Pg.306]    [Pg.230]    [Pg.54]    [Pg.10]    [Pg.323]    [Pg.335]    [Pg.140]    [Pg.238]    [Pg.242]    [Pg.525]    [Pg.527]    [Pg.537]    [Pg.547]    [Pg.385]    [Pg.390]    [Pg.5]    [Pg.401]    [Pg.527]    [Pg.353]    [Pg.33]    [Pg.551]    [Pg.129]    [Pg.151]    [Pg.165]    [Pg.180]    [Pg.146]    [Pg.148]    [Pg.41]    [Pg.300]   
See also in sourсe #XX -- [ Pg.237 ]




SEARCH



IPCM

© 2024 chempedia.info