Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poisoning inhaled poisons

CAUTION. The vapour of selenium dioxide is poisonous, and all operations involving the hot material, alone or in solution, should be performed in a fume-cupboard. If lumps of selenium dioxide have to be powdered in a mortar, the latter should also be in a fume-cupboard, with the window lowered as far as possible, to avoid inhaling the fine dust. (cf. p. 191)... [Pg.147]

Dimethyl sulphate is poisonous, both when the hot vapour is inhaled and even when the cold liquid is spilt on the hands, and considerable care should be eyercised in its use cf. pp. 215, 218, 526). [Pg.218]

Great care should be taken to keep dichlorophenylarsine, alone or in solution, from the hands if this precaution is observed, the cold liquid is easily and safely handled. The vapour from the hot liquid, or a fine spray of liquid itself, is poisonous if inhaled these conditions should not however arise in the above experiment. [Pg.315]

Care must be taken not to inhale dust from the seeds as they contain a poisonous protein the grinding should therefore be carried out in a fume-cupboard. [Pg.512]

Other mixtures which may be employed are carbon tetrachloride (b.p. 77°) and toluene (b.p. 110-111°) chloroform (b.p. 61°) and toluene methyl alcohol (b.p. 65°) and water (b.p. 100°). The last example is of interest because almost pure methyl alcohol may be isolated no constant boiling point mixture (or azeotropic mixture) is formed (compare ethyl alcohol and water, Sections 1,4 and 1,5). Attention is directed to the poisonous character of methyl alcohol the vapour should therefore not be inhaled. [Pg.232]

CAUTION, Doth the vapour and the liquid dimethyl sulphate are highly poisonous. Inhalation of the vapour may lead to giddiness and even to more serious results. The cold liquid is easily absorbed through the skin, with toxic results. If the dimethyl sulphate is accidentally splashed upon the hands, wash immediately... [Pg.669]

Acrolein is a DOT Flammable Liquid having subsidiary DOT hazard classifications of Poison B and Corrosive Material. It is also an inhalation hazard that falls under the special packaging requirements of 49 CER 173.3a. [Pg.129]

Because of the corrosive effects and discomfort associated with inhalation of fluorine, chronic toxicity does not occur. Although the metaboHc fate of fluorine is not clear, it does not seem that much is converted to fluoride ion in the body (107). Therefore comparisons to effects of fluoride ion poisoning, known as fluorosis, are probably incorrect. [Pg.131]

Both sodium fluoride and sodium bifluoride are poisonous if taken internally. Dust inhalation and skin or eye contact may cause irritation of the skin, eyes, or respiratory tract, and should be avoided by the use of proper protective equipment (1). [Pg.237]

The Du Pont HaskeU Laboratory for Toxicology and Industrial Medicine has conducted a study to determine the acute inhalation toxicity of fumes evolved from Tefzel fluoropolymers when heated at elevated temperatures. Rats were exposed to decomposition products of Tefzel for 4 h at various temperatures. The approximate lethal temperature (ALT) for Tefzel resins was deterrnined to be 335—350°C. AH rats survived exposure to pyrolysis products from Tefzel heated to 300°C for this time period. At the ALT level, death was from pulmonary edema carbon monoxide poisoning was probably a contributing factor. Hydrolyzable fluoride was present in the pyrolysis products, with concentration dependent on temperature. [Pg.370]

Propylene oxide is a primary irritant, a mild protoplasmic poison, and a mild depressant of the central nervous system. Skin contact, even in dilute solution (1%), may cause irritation to the eyes, respiratory tract, and lungs. Propylene oxide is a suspected carcinogen in animals. The LC q (lowest lethal concentration by inhalation in tats) is 4000 mg/kg body weight. The LD q (oral) is 930 mg/kg. The LD q (dermal) is 1500 mg/kg. The TWA (8-h exposure) is 100 ppm and the STEP (15-min exposure) is 150 ppm. [Pg.355]

Sodium nitrite is poisonous and prolonged contact with dry sodium nitrite or its solutions can cause irritation to the skin, eyes, and mucous membranes. The LD q (oral, rat) is 85 mg per kg body weight (11). Inhalation or ingestion of significant quantities of dust or mist may result in acute toxic effects such as nausea, cyanosis, and low blood pressure, which can lead to possible coUapse, coma, and even death. [Pg.199]

Health and Safety Factors. Carbonyl sulfide is dangerously poisonous, more so because it is practically odorless when pure. It is lethal to rats at 2900 ppm. Studies show an LD q (rat, ip) of 22.5 mg/kg. The mechanism of toxic action appears to iavolve breakdowa to hydrogea sulfide (36). It acts principally on the central nervous system with death resulting mainly from respiratory paralysis. Little is known regarding the health effects of subacute or chronic exposure to carbonyl sulfide a 400-p.g/m max level has been suggested until more data are available (37). Carbon oxysulfide has a reported inhalation toxicity in mice LD q (mouse) = 2900 ppm (37). [Pg.130]

Shipment nd Stora.ge, Sulfur monochloride is minimally corrosive to carbon steel and iron when dry. If it is necessary to avoid discoloration caused by iron sulfide formation or chloride stress cracking, 310 stainless steel should be used. Sulfur monochloride is shipped in tank cars, tank tmcks, and steel dmms. When wet, it behaves like hydrochloric acid and attacks steel, cast iron, aluminum, stainless steels, copper and copper alloys, and many nickel-based materials. Alloys of 62 Ni—28 Mo and 54 Ni—15 Cr—16 Mo are useful under these conditions. Under DOT HM-181 sulfur monochloride is classified as a Poison Inhalation Hazard (PIH) Zone B, as well as a Corrosive Material (DOT Hazard Class B). Shipment information is available (140). [Pg.138]

Health nd Safety Factors. Thionyl chloride is a reactive acid chloride which can cause severe bums to the skin and eyes and acute respiratory tract injury upon vapor inhalation. The hydrolysis products, ie, hydrogen chloride and sulfur dioxide, are beheved to be the primary irritants. Depending on the extent of inhalation exposure, symptoms can range from coughing to pulmonary edema (182). The LC q (rat, inhalation) is 500 ppm (1 h), the DOT label is Corrosive, Poison, and the OSHA PEL is 1 ppm (183). The safety aspects of lithium batteries (qv) containing thionyl chloride have been reviewed (184,185). [Pg.141]

Health and Safety Factors. Sulfuryl chloride is both corrosive to the skin and toxic upon inhalation. The TLV suggested by the manufacturer is 1 ppm. The vapors irritate the eyes and upper respiratory tract, causing prompt symptoms ranging from coughing to extreme bronchial irritation and pulmonary edema. The DOT label is Corrosive, Poison. [Pg.143]

Shipment and Storage. Liquid sulfur dioxide is commonly shipped in North America using 55- and 90-t tank cars, 20-ton tank tmcks, 1-ton cylinders, and 150-lb cylinders. Cylinders made of specified steel are affixed with the green label for nonflammable gases. The DOT classification is Poison Gas, Inhalation Ha2ard. Purchasers of tank-car quantities are required to have adequate storage faciUties for prompt transfer. [Pg.147]

Acute benzene poisoning results in CNS depression and is characterized by an initial euphoria followed by staggered gait, stupor, coma, and convulsions. Exposure to approximately 4000 ppm benzene results in complete loss of consciousness. Insomnia, agitation, headache, nausea, and drowsiness may persist for weeks after exposure (126). Continued inhalation of benzene to the point of euphoria has caused irreversible encephalopathy with tremulousness, emotional lability, and diffuse cerebral atrophy (125). In deaths arising from acute exposure, respiratory tract infection, hypo- and hyperplasia of sternal bone marrow, congested kidneys, and cerebral edema have been found at autopsy. [Pg.47]

Safety No industrial poisoning from bismuth has been reported (10). However, precautions should be taken against the careless handling of bismuth and its compounds ingestion and inhalation of dusts and fumes should be avoided. [Pg.125]

Care must be exercised in handling carbon disulfide because of both health concerns and the danger of fire or explosions. Occupational exposure potentially may involve as many as 20,000 workers in the United States (136). Ingestion is rare, but a 10 mL dose can prove fatal (137). Contact usually occurs by inhalation of vapor. However, vapor and Hquid can be absorbed through intact skin and poisoning may occur by the dermal route (138). [Pg.33]

Exposure to metal carbonyls can present a serious health threat. Nickel carbonyl is considered to be one of the most poisonous inorganic compounds. However, the toxicological information available on metal carbonyls is restricted to the mote common, commercially important compounds such as Ni(CO)4 and Ee(CO). Other metal carbonyls are considered potentially dangerous, especially ia the gaseous state, by analogy to nickel and iron carbonyls. Data concerning toxicological studies on a few common metal carbonyls are Hsted ia Table 6 (185). Additional toxicity data are OSHA personal exposure limits (PEL) for Ee(CO) this is 8 h at 0.1 ppm, whereas for the much more toxic Ni(CO)4 it is 8 h at 0.001 ppm, with a toxic concentration TCLq low (of 7 mg/m ) for human inhalation. [Pg.71]


See other pages where Poisoning inhaled poisons is mentioned: [Pg.305]    [Pg.218]    [Pg.161]    [Pg.12]    [Pg.479]    [Pg.525]    [Pg.108]    [Pg.47]    [Pg.66]    [Pg.291]    [Pg.314]    [Pg.314]    [Pg.368]    [Pg.370]    [Pg.232]    [Pg.251]    [Pg.113]    [Pg.335]    [Pg.211]    [Pg.192]    [Pg.192]    [Pg.261]    [Pg.284]    [Pg.336]    [Pg.336]    [Pg.483]    [Pg.393]    [Pg.393]    [Pg.393]    [Pg.59]   
See also in sourсe #XX -- [ Pg.129 ]




SEARCH



For cyanide poisoning in smoke inhalation

Gas inhalation poisonings

National Inhalants Poisons Awareness

Pesticide poisoning inhalation

Poisoning Associated With Inhalant Abuse

Poisoning inhalation

Poisoning inhalation

Poisonous by inhalation

Poisons, inhalation

Poisons, inhalation

© 2024 chempedia.info