Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Point Ion Collectors Detectors

Ion detectors can be separated into two classes those that detect the arrival of all ions sequentially at one point (point ion collector) and those that detect the arrival of all ions simultaneously along a plane (array collector). This chapter discusses point collectors (detectors), while Chapter 29 focuses on array collectors (detectors). [Pg.201]

Other types of mass spectrometer may use point, array, or both types of collector. The time-of-flight (TOF) instrument uses a special multichannel plate collector an ion trap can record ion arrivals either sequentially in time or all at once a Fourier-transform ion cyclotron resonance (FTICR) instrument can record ion arrivals in either time or frequency domains which are interconvertible (by the Fourier-transform technique). [Pg.201]


In modem mass spectrometry, ion collectors (detectors) are generally based on the electron multiplier and can be separated into two classes those that detect the arrival of all ions sequentially at a point (a single-point ion collector) and those that detect the arrival of all ions simultaneously (an array or multipoint collector). This chapter compares the uses of single- and multipoint ion collectors. For more detailed discussions of their construction and operation, see Chapter 28, Point Ion Collectors (Detectors), and Chapter 29, Array Collectors (Detectors). In some forms of mass spectrometry, other methods of ion detection can be used, as with ion cyclotron instmments, but these are not considered here. [Pg.211]

An array ion collector (detector) consists of a large number of miniature electron multiplier elements arranged side by side along a plane. Point ion collectors gather and detect ions sequentially (all ions are focused at one point one after another), but array collectors gather and detect all ions simultaneously (all ions are focused onto the array elements at the same time). Array detectors are particularly useful for situations in which ionization occurs within a very short space of time, as with some ionization sources, or in which only trace quantities of a substance are available. For these very short time scales, only the array collector can measure a whole spectrum or part of a spectrum satisfactorily in the time available. [Pg.210]

Each element of an array detector is essentially a small electron multiplier, as with the point ion collector, but much smaller and often shaped either as a narrow linear tube or as somewhat like a snail shell. [Pg.409]

Alternatively, ions of any one selected m/z value can be chosen by holding the magnetic field steady at the correct strength required to pass only the desired ions any other ions are lost to the walls of the instrument. The selected ions pass through the gas cell and are detected in the single-point ion collector. If there is a pressure of a neutral gas such as argon or helium in the gas cell, then ion-molecule collisions occur, with decomposition of some of the selected incident ions. This is the MS/MS mode. However, without the orthogonal TOF section, since there is no further separation by m/z value, the new ions produced in the gas cell would not be separated into individual m/z values before they reached the detector. Before the MS/MS mode can be used, the instrument must be operated in its hybrid state, as discussed below. [Pg.159]

After the mass analyser has dispersed the ions in space or in time according to their various m/z values, they may be collected by a detector. In modern mass spectrometry, a detector consists of a planar assembly of small electron multipliers, called an array in one case (spatial separation) and a microchaimel plate in the other (temporal separation). These collectors can either detect the arrival of all ions sequentially at a point (a point ion collector) or detect the arrival of all ions simultaneously (an array or multipoint collector). [Pg.340]

All mass spectrometers analyze ions for their mass-to-charge ratios (m/z values) by separating the individual m/z values and then recording the numbers (abundance) of ions at each m/z value to give a mass spectrum. Quadrupoles allow ions of different m/z values to pass sequentially e.g., ions at m/z 100, 101, 102 will pass one after the other through the quadrupole assembly so that first m/z 100 is passed, then 101, then 102 (or vice versa), and so on. Therefore, the ion collector (or detector) at the end of the quadrupole assembly needs only to cover one point or focus for a whole spectrum to be scanned over a period of time (Figure 28.1a). This type of point detector records ion arrivals in a time domain, not a spatial one. [Pg.201]

There are two common occasions when rapid measurement is preferable. The first is with ionization sources using laser desorption or radionuclides. A pulse of ions is produced in a very short interval of time, often of the order of a few nanoseconds. If the mass spectrometer takes 1 sec to attempt to scan the range of ions produced, then clearly there will be no ions left by the time the scan has completed more than a few nanoseconds (ion traps excluded). If a point ion detector were to be used for this type of pulsed ionization, then after the beginning of the scan no more ions would reach the collector because there would not be any left The array collector overcomes this difficulty by detecting the ions produced all at the same instant. [Pg.209]

The major advantage of array detectors over point ion detectors lies in their ability to measure both a range of m/z values and the corresponding ion abundances all at one time, rather than sequentially. For example, suppose it takes 10 msec to measure one m/z value and the associated number of ions (abundance). To measure 100 such ions of different m/z values with a point ion detector would require 1000 msec (1 sec). For the array detector, the time is stiU only 10 msec because all the ions of different m/z values arrive at the collector at the same time. Therefore, when it is important to be able to measure a range of ion m/z values in a short space of time, the array detector is advantageous. [Pg.216]

Fhght times are extremely short (microseconds) for all of the ions, and therefore the scanning of the total mass spectrum from m/z 1 to about m/z 2000-3000 appears to be instantaneous on a human time scale. The arrival of ions at the finishing point is determined by a time-to-digital (TDC) microchannel plate collector (detector). [Pg.401]

Ions of a given m/z value are collected at one of the small point ion detectors ions of larger or smaller m/z values are collected at other point collectors placed on either side. [Pg.408]

Quadrupole mass spectrometers (mass filters) allow ions at each m/z value to pass through the analyser sequentially. Therefore, the ion collector at the end of the quadrupole unit needs only to cover one point or focus in space and can be placed immediately behind the analyser. A complete mass spectrum is recorded over a period of time (temporarily), which is set by the voltages on the quadrupole analyser. The resolution of m/z values is dependent solely on the analyser and not on the detector. [Pg.340]


See other pages where Point Ion Collectors Detectors is mentioned: [Pg.201]    [Pg.203]    [Pg.408]    [Pg.201]    [Pg.203]    [Pg.408]    [Pg.201]    [Pg.203]    [Pg.408]    [Pg.201]    [Pg.203]    [Pg.408]    [Pg.154]    [Pg.158]    [Pg.205]    [Pg.206]    [Pg.209]    [Pg.154]    [Pg.158]    [Pg.205]    [Pg.209]    [Pg.213]    [Pg.216]    [Pg.404]    [Pg.211]    [Pg.213]    [Pg.216]    [Pg.212]   


SEARCH



Collector

Collector point

Detectors point

Ion collector

Ion detectors

Point ion collectors

Point ion detectors

© 2024 chempedia.info