Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plutonium uranium reduction extraction PUREX process

Then the fuel elements are dissolved in 7m HNO3 to give a solution containing U and Pu which, in the widely used plutonium-uranium-reduction, or Purex process, are extracted into 20% tributyl phosphate (TBP) in kerosene leaving most of the fission products... [Pg.1260]

The Purex process, ie, plutonium uranium reduction extraction, employs an organic phase consisting of 30 wt % TBP dissolved in a kerosene-type diluent. Purification and separation of U and Pu is achieved because of the extractability of U02+2 and Pu(IV) nitrates by TBP and the relative inextractability of Pu(III) and most fission product nitrates. Plutonium nitrate and U02(N03)2 are extracted into the organic phase by the formation of compounds, eg, Pu(N03)4 -2TBP. The plutonium is reduced to Pu(III) by treatment with ferrous sulfamate, hydrazine, or hydroxylamine and is transferred to the aqueous phase U remains in the organic phase. Further purification is achieved by oxidation of Pu(III) to Pu(IV) and re-extraction with TBP. The plutonium is transferred to an aqueous product. Plutonium recovery from the Purex process is ca 99.9 wt % (128). Decontamination factors are 106 — 10s (97,126,129). A flow sheet of the Purex process is shown in Figure 7. [Pg.201]

In the second-generation reprocessing, the applied separation technology has been the PUREX process, an acronym of Plutonium Uranium Reduction Extraction (4) based on a liquid-liquid extraction with tri-n-butyl phosphate (TBP) in //-paraffin diluent, which selectively recovers Pu and U on an industrial scale. [Pg.2]

The control of the actinide metal ion valence state plays a pivotal role in the separation and purification of uranium and plutonium during the processing of spent nuclear fuel. Most commercial plants use the plutonium-uranium reduction extraction process (PUREX) [58], wherein spent fuel rods are initially dissolved in nitric acid. The dissolved U and Pu are subsequently extracted from the nitric solution into a non-aqueous phase of tributyl phosphate (TBP) dissolved in an inert hydrocarbon diluent such as dodecane or odourless kerosene (OK). The organic phase is then subjected to solvent extraction techniques to partition the U from the Pu, the extractability of the ions into the TBP/OK phase being strongly dependent upon the valence state of the actinide in question. [Pg.453]

Many variants of the Purex (Plutonium Uranium Reduction Extraction) process based on TBP extraction have been developed but a basic outline flowsheet is illustrated in Figure 38. This shows the so-called early split flowsheet most commonly used in existing plants. It involves the separation of the uranium and plutonium using two different back-extractant streams during the first solvent extraction cycle. Additional solvent extraction cycles are then carried out independently on the uranium and plutonium streams to effect further purification. An alternative arrangement is the late split flowsheet used at the Cap La Hague plant in France, and the... [Pg.939]

The most widely employed method for plutonium reprocessing used today in almost all of the world s reprocessing plants is the Purex (plutonium-uranium reduction extraction) process. Tributylphosphate (TBP) is used as the extraction agent for the separation of plutonium from uranium and fission products. In effecting a separation, advantage is taken of differences in the extractability of the various oxidation states and in the thermodynamics and kinetics of oxidation reduction of uranium, plutonium, and impurities. Various methods are in use for the conversion of plutonium nitrate solution, the final product from fuel reprocessing plants, to the metal. The reduction of plutonium halides with calcium proved to be the best method... [Pg.11]

A primary goal of chemical separation processes in the nuclear industry is to recover actinide isotopes contained in mixtures of fission products. To separate the actinide cations, advantage can be taken of their general chemical properties [18]. The different oxidation states of the actinide ions lead to ions of charges from +1 (e.g., NpOj) to +4 (e.g., Pu" " ) (see Fig. 12.1), which allows the design of processes based on oxidation reduction reactions. In the Purex process, for example, uranium is separated from plutonium by reducing extractable Pu(IV) to nonextractable Pu(III). Under these conditions, U(VI) (as U02 ) and also U(IV) (as if present, remain in the... [Pg.511]

In order to separate the uranium and plutonium the Pu022+ was reduced to Pu3+, which was not extracted by MIBK and was thus held in the aqueous phase. The choice of a reducing agent for plutonium is rather important, and is discussed in more detail below in relation to the Purex process. In the Redox process, 0.05 M aqueous iron(II) sulfamate salted with 1.3MA1(N03)3 was used, the reduction of Pu022+ by Fe2"1" proceeding according to equation (156). The products... [Pg.938]

Reprocessing is based on liquid-liquid extraction for the recovery of uranium and plutonium from used nuclear fuel (PUREX process). The spent fuel is first dissolved in nitric acid. After the dissolution step and the removal of fine insoluble solids, an organic solvent composed of 30% TriButyl Phosphate (TBP) in TetraPropylene Hydrogenated (TPH) or Isopar L is used to recover both uranium and plutonium the great majority of fission products remain in the aqueous nitric acid phase. Once separated from the fission products, back-extraction combined with a reduction of Pu(I V) to Pu(III) allows plutonium to be separated from uranium these two compounds can be recycled.2... [Pg.198]

Redox [Reduction oxidation] A process for separating the components of used nuclear fuel by solvent extraction. It was the first such process to be used and was brought into operation at Hanford, WA, in 1951, but was superseded in 1954 by the Purex process. The key to the process was the alternate reduction and oxidation of the plutonium, hence the name. The solvent was Hexone (4-methyl-2-pentanone, methyl wobutyl ketone), so the process was also known as the Hexone process. The aqueous phase contained a high concentration of aluminum nitrate to salt out the uranium and plutonium nitrates into the organic phase. The presence of this aluminum nitrate in the wastes from the process, which made them bulky, was the main reason for the abandonment of the process. See also Butex. [Pg.303]

Ions of different valences of a metal behave like different elements with respect to extract-ability. The difference between Ce and Ce in Table 4.2 is one example. Another is afforded by Pu and Pu 02, which are readily extracted by TBP in kerosene, whereas Pu has a very low distribution coefficient [G31. Consequently, by adjusting the oxidation-reduction potential of the aqueous phase to control the proportion of an element in different valence states, it is possible to vary its distribution coefficient between wide limits. This is the mearts by which plutonium is stripped from aqueous solutions containing plutonium and uranium in sections C and D of Fig. 4.5 illustrating the Purex process. Addition of a reducing... [Pg.165]

The next step in the Purex process after primary decontamination is separation of plutonium from uranium. This is done by reducing plutonium to the trivalent state, in which it is inextractable by TBP, while leaving the uranium in the extractable hexavalent condition. Reductants that have been used for this purpose include Fe, U, hydroxylamine, or cathodic reduction. [Pg.486]

Process selection. The processes just described recovered neptunium only partially and in variable yield because of the difficulty in controlling the distribution of neptunium valence between 5 and 6 in the primary extraction step with nitrite-catalyzed HNO3 and the incomplete reduction of neptunium from valence 5 to 4 in the partitioning step with feirous ion. This section describes a modified Purex process that could be used if more complete recovery of neptunium were required. It is based on process design studies by Tajik [Tl]. The principal process steps are shown in the material flow sheet Fig. 10.32. In the primary decontamination step, pentavalent vanadium oxidizes neptunium to the extractable hexavalent state. In the partitioning step, tetravalent uranium reduces plutonium to the inextractable trivalent state while converting neptunium to the still-extractable tetravalent state. [Pg.545]

Some part of the spent fuel of atomic reactors is reprocessed separating uranium, plutonium, and the fission products, in order to produce new fissionable fuel or to collect some part of the valuable fission products. While several reprocessing methods have been proposed, the Purex process is the most widely used all over the world. The process uses 30% tributyl phosphate, TBP, as extractant in dodecane or kerosene solvent that is used to decrease the viscosity and the density of the liquid. The mixture is easily separated from water. The spent fuel is dissolved in concentrated nitric acid and the aqueous solution is mixed with the organic extractant. U and Pu present in the aqueous phase in the forms U02 and Pu are extracted to the organic phase, the fission products remain in the aqueous solution. After reduction of Pu by chemical or electrochemical method, Pu goes back to the aqueous phase, while the uranium remains in the organic phase (Benndict et al., 1981 Choppin et al. 1995 Katsumura 2004). [Pg.1315]


See other pages where Plutonium uranium reduction extraction PUREX process is mentioned: [Pg.452]    [Pg.201]    [Pg.529]    [Pg.72]    [Pg.2648]    [Pg.388]    [Pg.264]    [Pg.853]    [Pg.709]    [Pg.945]    [Pg.627]    [Pg.945]    [Pg.7090]    [Pg.709]    [Pg.149]    [Pg.2673]    [Pg.431]    [Pg.11]    [Pg.954]    [Pg.954]    [Pg.7099]    [Pg.413]    [Pg.431]   
See also in sourсe #XX -- [ Pg.2 , Pg.12 , Pg.32 , Pg.71 , Pg.86 , Pg.87 , Pg.88 , Pg.91 , Pg.94 , Pg.120 , Pg.145 , Pg.167 , Pg.198 , Pg.201 , Pg.204 , Pg.215 , Pg.238 , Pg.251 , Pg.262 , Pg.360 , Pg.430 , Pg.439 , Pg.446 , Pg.447 , Pg.450 , Pg.482 , Pg.604 , Pg.624 , Pg.627 , Pg.631 ]




SEARCH



Extraction Purex

Extraction process

Extractive processes

PUREX process uranium extraction

Plutonium Purex process

Plutonium processing

Plutonium processing PUREX process

Plutonium processing processes

Processing extraction

Purex

Purex (Plutonium Uranium Reduction

Reduction process

Reduction processing

Reductive processes

Uranium Purex process

Uranium extraction

Uranium plutonium

Uranium process

Uranium processing

Uranium reductant

Uranium reduction

© 2024 chempedia.info