Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plate adsorbents

The universal TLC facilities are utilized plates, adsorbents, microcapillaries, or micropipettes for sample application, development tanks, detection spray reagents, devices for spraying, and densitometers for quantification. Plates are either commercially precoated or handmade. Silica gel G (G, for gypsum as a binding substance), silica gel H (no binding substance) and, rarely, alumina and kieselguhr, form the thin-layer stationary phases. Complete sets of devices necessary for the preparation of handmade plates are commercially available. After the silica gel slurry is spread on the plates, they are left to dry in the air for at least 24 hr and shortly in an oven at 110°C. The plates are then ready for either direct use or for modification of the layer. From the great variety of precoated plates, which are commercially available and preferred nowadays, silica gel plates and plates with layers... [Pg.942]

Figure I 1.8 The plate adsorber configuration developed at Warwick University. Figure I 1.8 The plate adsorber configuration developed at Warwick University.
TLC plate adsorbents (e.g., silica gel, alumina and so on) usually contain small amounts of substances which migrate with the development solvent along the plate towards the solvent front. Solvents such as methanol cause migration of adsorbent impurities almost completely to the solvent front, whereas non-polar solvents such as -hexane do so to a lesser extent. These impurities adsorbed in the UV region of the spectrum but do not appear to absorb much in the infrared region the impurities also produce a char when the plate was sprayed with sulfuric acid and heated to about 170 °C, indicating that they contain organic matter. [Pg.157]

It should be noted that here, as with capillary rise, there is an adsorbed film of vapor (see Section X-6D) with which the meniscus merges smoothly. The meniscus is not hanging from the plate but rather fiom a liquidlike film [53]. The correction for the weight of such film should be negligible, however. [Pg.23]

This method suffers from two disadvantages. Since it measures 7 or changes in 7 rather than t directly, temperature drifts or adventitious impurities can alter 7 and be mistakenly attributed to changes in film pressure. Second, while ensuring that zero contact angle is seldom a problem in the case of pure liquids, it may be with film-covered surfaces as film material may adsorb on the slide. This problem can be a serious one roughening the plate may help, and some of the literature on techniques is summarized by Gaines [69]. On the other hand, the equipment for the Wilhelmy slide method is simple and inexpensive and can be just as accurate as the film balance described below. [Pg.114]

Fig. X-16. (a) Microscopic appearance of the three-phase contact region, (b) Wetting meniscus against a vertical plate showing the meniscus only, adsorbed film only, and joined profile. (From Ref. 226 with permission. Copyright 1980 American Chemical Society.)... Fig. X-16. (a) Microscopic appearance of the three-phase contact region, (b) Wetting meniscus against a vertical plate showing the meniscus only, adsorbed film only, and joined profile. (From Ref. 226 with permission. Copyright 1980 American Chemical Society.)...
In 1960, Harrick demonstrated that, for transparent substrates, absorption spectra of adsorbed layers could be obtained using internal reflection [42]. By cutting the sample in a specific trapezoidal shape, the IR beam can be made to enter tlirough one end, bounce internally a number of times from the flat parallel edges, and exit the other end without any losses, leading to high adsorption coeflScients for the species adsorbed on the external surfaces of the plate (Irigher than in the case of external reflection) [24]. This is the basis for the ATR teclmique. [Pg.1784]

This is used extensively for qualitative analysis, for it is a rapid process and requires simple apparatus. The adsorbent is usually a layer, about 0 23 mni. thick, of silica gel or alumina, with an inactive binder, e.g. calcium sulphate, to increase the strength of the layer.. A. i i slurry of the absorbent and methanol is commonly coated on glass plates (5 20 cm. or 20 x 20 cm.), but microscope... [Pg.58]

When the solvent around the spot has evaporated, the plate is placed ertically in a glass developing tank (a cylinder for small slides) which contains a small quantity of the solvent and is lined with filter-paper dipping into the solvent the level of the latter is adjusted, preferably with a pipette, so that the lower edge of the absorbent layer is under the soh ent but the spot is above this level, and the top of the cylinder is then firmly closed. The solvent rises through the adsorbent layer, and the components of the mixture ascend at different rates depending on their affinities for the adsorbent. [Pg.58]

As pointed out earlier (Section 3.5), certain shapes of hysteresis loops are associated with specific pore structures. Thus, type HI loops are often obtained with agglomerates or compacts of spheroidal particles of fairly uniform size and array. Some corpuscular systems (e.g. certain silica gels) tend to give H2 loops, but in these cases the distribution of pore size and shape is not well defined. Types H3 and H4 have been obtained with adsorbents having slit-shaped pores or plate-like particles (in the case of H3). The Type I isotherm character associated with H4 is, of course, indicative of microporosity. [Pg.287]

Commercially available pre-coated plates with a variety of adsorbents are generally very good for quantitative work because they are of a standard quality. Plates of a standardised silica gel 60 (as medium porosity silica gel with a mean porosity of 6mm) released by Merck have a specific surface of 500 m /g and a specific pore volume of 0.75 mL/g. They are so efficient that they have been called high performance thin layer chromatography (HPTLC) plates (Ropphahn and Halpap J Chromatogr 112 81 1975). In another variant of thin layer chromatography the... [Pg.18]

The complexity of the system increases with the number of solvents used and, of course, their relative concentrations. The process can be simplified considerably by pre-conditioning the plate with solvent vapor from the mobile phase before the separation is started. Unfortunately, this only partly reduces the adsorption effect, as the equilibrium between the solvent vapor and the adsorbent surface will not be the... [Pg.13]


See other pages where Plate adsorbents is mentioned: [Pg.938]    [Pg.10]    [Pg.341]    [Pg.131]    [Pg.866]    [Pg.938]    [Pg.10]    [Pg.341]    [Pg.131]    [Pg.866]    [Pg.247]    [Pg.413]    [Pg.1710]    [Pg.1800]    [Pg.1889]    [Pg.158]    [Pg.160]    [Pg.131]    [Pg.40]    [Pg.295]    [Pg.358]    [Pg.236]    [Pg.522]    [Pg.410]    [Pg.109]    [Pg.467]    [Pg.49]    [Pg.1550]    [Pg.2411]    [Pg.18]    [Pg.18]    [Pg.19]    [Pg.19]    [Pg.94]    [Pg.334]    [Pg.12]    [Pg.210]    [Pg.219]    [Pg.227]    [Pg.232]    [Pg.443]    [Pg.445]   
See also in sourсe #XX -- [ Pg.305 ]




SEARCH



© 2024 chempedia.info