Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plastic crystal Poly

Gosain, D. P. 2002. Excimer laser crystallized poly-Si TFT s on plastic substrates. Proc. SPIE 4426 394 00. [Pg.446]

Quasi-solid-state electrolytes include gel polymer electrolytes, ionic liquids, and plastic crystal systems. It is important to distinguish polymer electrolytes and gel polymer electrolytes. In polymer electrolytes, charged cationic or anionic groups are chemically bonded to a polymer chain, while gel polymer electrolytes are solvated by a high dielectric constant solvent and are free to move. In a classical gel electrolyte, polymer and salts are mixed with a solvent, usually having a concentration above 50 wt%, and the role of the polymer is to act as a stiffener for the solvent, creating a three-dimensional network, where cations and anions move freely in the liquid phase [88]. The solid polymer electrolyte includes poly(ethylene oxide) (PEO)-based lithium ion conductors that typically show conductivities of 10 S cm while the gel polymer electrolytes have semisolid character with much higher ionic conductivities of the order 10 —10 S cm . ... [Pg.130]

Acrylic ESTER POLYMERS Acrylonitrile POLYMERS Cellulose esters). Engineering plastics (qv) such as acetal resins (qv), polyamides (qv), polycarbonate (qv), polyesters (qv), and poly(phenylene sulfide), and advanced materials such as Hquid crystal polymers, polysulfone, and polyetheretherketone are used in high performance appHcations they are processed at higher temperatures than their commodity counterparts (see Polymers containing sulfur). [Pg.136]

Similarly, the random introduction by copolymerization of stericaHy incompatible repeating unit B into chains of crystalline A reduces the crystalline melting point and degree of crystallinity. If is reduced to T, crystals cannot form. Isotactic polypropylene and linear polyethylene homopolymers are each highly crystalline plastics. However, a random 65% ethylene—35% propylene copolymer of the two, poly(ethylene- (9-prop5lene) is a completely amorphous ethylene—propylene mbber (EPR). On the other hand, block copolymers of the two, poly(ethylene- -prop5iene) of the same overall composition, are highly crystalline. X-ray studies of these materials reveal both the polyethylene lattice and the isotactic polypropylene lattice, as the different blocks crystallize in thek own lattices. [Pg.434]

Some of the common types of plastics that ate used ate thermoplastics, such as poly(phenylene sulfide) (PPS) (see Polymers containing sulfur), nylons, Hquid crystal polymer (LCP), the polyesters (qv) such as polyesters that ate 30% glass-fiber reinforced, and poly(ethylene terephthalate) (PET), and polyetherimide (PEI) and thermosets such as diaHyl phthalate and phenoHc resins (qv). Because of the wide variety of manufacturing processes and usage requirements, these materials ate available in several variations which have a range of physical properties. [Pg.32]

Kulinski, Z. and Piorkowska, E. 2005. Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 46 10290-10300. [Pg.38]

To facilitate and accelerate folding and crystallization of polymer chains, internal plasticizers are often added to PET to serve as crystallation promoters. Such additives are usually based on poly(ether ester)s. These plasticizers are liquids that are typically added at levels of 2-4 wt%. They reduce cycle time in injection moulding operations by increasing the rate of crystalline formation. They also plasticize the resin and act as processing aids by virtue of their lubricating action in the melt. On a molecular level, these plasticizers reduce the intermolecular... [Pg.520]

Figure 14.16 Mechanism by which poly(ether ester)s function as crystallization promoters. Such materials internally lubricate and plasticize the PET molecular chains, thus allowing reptation (i.e. chain folding) to occur more quickly... Figure 14.16 Mechanism by which poly(ether ester)s function as crystallization promoters. Such materials internally lubricate and plasticize the PET molecular chains, thus allowing reptation (i.e. chain folding) to occur more quickly...
The blend of poly(bisphenol A carbonate)-(poly(caprolactone) PC-PCL is particularly unusual in that both polymers are capable of crystallization and FT-IR has been used to study the state of order in these blends as a function of the method of preparation 254,255). In this case, PCL is a macromolecular plasticizer for PC. The PCL becomes progressively less crystalline as the concentration of PC increases. PC is amorphous if the blend is cast from methylene chloride but semicrystalline if cast from tetrahydrofuran. When PC in the pure form is exposed to acetone, it will not crystallize, but in the blend, exposure of acetone causes the PC to crystallize which emphasizes the additional mobility of the PC in the blend. [Pg.132]

Poly(trimethylene terephthalate). Poly(trimethylene terephthal-ate) (PIT) is a crystalline polymer that is used for fibers, films, and engineering plastics. The polymer has an outstanding tensile elastic recovery, good chemical resistance, a relative low melting temperature, and a rapid crystallization rate. It combines some of the advantages of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT). Disadvantageous are the low heat distortion temperature, low melt viscosity, poor optical properties, and pronounced brittleness low temperatures. [Pg.224]

The homopolymers poly(methyl methacrylate) and poly-(ethyl methacrylate) are compatible with poly(vinylidene fluoride) when blended in the melt. True molecular com-patibility is indicated by their transparency and a single, intermediate glass transition temperature for the blends. The Tg results indicate plasticization of the glassy methacrylate polymers by amorphous poly(vinylidene fluoride). The Tg of PVdF is consistent with the variation of Tg with composition in both the PMMA-PVdF and PEMA-PVdF blends when Tg is plotted vs. volume fraction of each component. PEMA/PVdF blends are stable, amorphous systems up to at least 1 PVdF/I PEMA on a weight basis. PMMA/ blends are subject to crystallization of the PVdF component with more than 0.5 PVdF/1 PMMA by weight. This is an unexpected result. [Pg.28]

Mixtures of poly(vinylidene fluoride) with poly (methyl methacrylate) and with poly (ethyl methacrylate) form compatible blends. As evidence of compatibility, single glass transition temperatures are observed for the mixtures, and transparency is observed over a broad range of composition. These criteria, in combination, are acceptable evidence for true molecular intermixing (1, 19). These systems are particularly interesting in view of Bohns (1) review, in which he concludes that a compatible mixture of one crystalline polymer with any other polymer is unlikely except in the remotely possible case of mixed crystal formation. In the present case, the crystalline PVdF is effectively dissolved into the amorphous methacrylate polymer melt, and the dissolved, now amorphous, PVdF behaves as a plasticizer for the glassy methacrylate polymers. [Pg.40]


See other pages where Plastic crystal Poly is mentioned: [Pg.108]    [Pg.269]    [Pg.13]    [Pg.193]    [Pg.126]    [Pg.81]    [Pg.378]    [Pg.138]    [Pg.330]    [Pg.434]    [Pg.434]    [Pg.261]    [Pg.396]    [Pg.600]    [Pg.372]    [Pg.521]    [Pg.545]    [Pg.547]    [Pg.484]    [Pg.96]    [Pg.96]    [Pg.200]    [Pg.138]    [Pg.330]    [Pg.434]    [Pg.261]    [Pg.396]   


SEARCH



Crystal plasticity

Plastic crystals

Plasticity crystallization

Poly , crystal

Poly , crystallization

Poly , plasticizers

Poly plasticization

Poly plasticized

© 2024 chempedia.info