Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photothermal beam deflection spectroscopy technique

IR photothermal beam deflection spectroscopy (PBDS) and measurements of IR spectra of solids over the range 3950-450 cm l made with an interferometer coupled with a detector which senses the photothermal effect by the deflection of a laser beam are described. PBDS is a general technique and requires no sample preparation all that is needed is to hold the sample at the IR focus. The sample must have a flat spot about 2 mm in diameter accessible to the IR and laser beams. As no sample cells per se are... [Pg.403]

The technique employed is IR-FT photothermal beam deflection spectroscopy (PBDS). It is an off-shoot of photoacoustic spectroscopy (PAS) [1] and is based on the "mirage detection of the photothermal effect invented by Boccara et al. [2] and shown to result in a spectroscopic technique of remarkable versatility and utility. Some applications of "mirage spectroscopy," mainly in the visible, and theoretical treatments, have been described [3 6]. The method has now been developed for use in the IR. The spectrometer and techniques are described in detail elsewhere [7], but it will be useful to give a brief outline of the principles. [Pg.404]

Some recent developments in IR techniques have included IR photoacoustic and photothermal beam deflection spectroscopy. In photoacoustic spectroscopy the IR wave incident to the solid surface of the catalyst is absorbed by the sample. The radiation is converted to a... [Pg.124]

An alternative technique is the so-called Photothermal Beam Deflection Spectroscopy [PBDS], based on the so-called mirage effect first reported by Boccarra and coworkers [39, 40]. In this case, the periodic temperature rise caused by the absorption of the modulated IR radiation (i.e. the photothermal effect) is detected optically because it causes periodic deflections of a laser beam passing close to the surface of the solid sample. The PBDS technique has some advantages over the PAS technique, because of its lower Hmits of sample dimensions, but it has disadvantages because of the critical geometric setup. Like PAS, PBDS can have advantages with respect to traditional IR technique for the detection of surface... [Pg.106]

Basically, there are two categories of FTIR spectroscopies reflection and nonreflection techniques [38], The latter class comprises either acoustic detection or emission from the sample itself. The techniques recognized here are photoacoustic spectroscopy (PAS), emission spectroscopy (EMS), and photothermal beam deflection spectroscopy (PBDS). These techniques will not be considered further in this chapter. The reader is referred to the literature [39-42], For adhesion studies the reflection techniques (SRIRS) are more important. The major classes of sampling techniques in SRIRS are ... [Pg.408]

The other difficulty in the IR studies of carbons using halide pellets is the exposure of the carbon material to atmospheric gases and vapors that tend to vitriate the results. The development of elaborate techniques for obtaining carbonaceous films and preparation of charcoals by carbonization under vacuum conditions broadened the scope of applications of IR spectroscopy to the study of carbons and their surface groups. Furthermore, the sensitivity of IR measurements has been largely enhanced by using Fourier-Transform (FT), Photoacoustic (PAS), and Photothermal Beam Deflection (PDS) IR spectroscopy. [Pg.26]

Photothermal deflection spectroscopy — Photothermal deflection is a photothermal spectroscopic technique used to detect the changes in the refractive index of the fluid above an illuminated sample by the deflection of a laser beam. There are two sources from which the thermal deflection effect might appear. One of them is produced by a gradient in the refractive index after a thermal excitation where the density also varies with temperature, in the so-called mirage effect. And the other one is produced by the topographical deformation of the surface over which the laser beam is reflected. This effect is known as photothermo-elastic effect or surface photothermal deflection [i]. [Pg.500]

Where R is the reflectivity and d is the thickness. Very accurate values of R and T are needed when the absorptance, (id, is small. The technique of photothermal deflection spectroscopy (PDS) overcomes this problem by measuring the heat absorbed in the film, which is proportional to ad when ad 1. A laser beam passing just above the surface is deflected by the thermal change in refractive index of a liquid in which the sample is immersed. Another sensitive measurement of ad is from the speetral dependence of the photoconductivity. The constant photocurrent method (CPM) uses a background illumination to ensure that the recombination lifetime does not depend on the photon energy and intensity of the illumination. Both techniques are capable of measuring ad down to values of about 10 and provide a very sensitive measure of the absorption coefficient of thin films. [Pg.85]

The feasibility of thermic and calorimetric detection of the absorbed radiation has been mentioned in the context of grazing-incidence experiments. This is quite close to the class of photothermal techniques with which a number of different detection schemes is employed (Coufal, 1986). Out of these, photoacoustic spectroscopy (PAS) is frequently used in infrared spectroscopy (Graham et al., 1985 Urban et al., 1990 McClelland, 1992) while inspite of its potential, thermal beam deflection has not yet found as many applications as in other spectral ranges, possibly due to the lower availability of suitable lasers (Low and Morterra, 1985). [Pg.602]

Variants of these techniques are the Photothermal Deflection Spectroscopy (PDS or Mirage effect) and Photothermal Displacement Spectroscopy (102). These techniques are based on deflection of a light beam due to refractive index gradients either In a fluid (or air) in contact with a light absorbing solid or in the solid itself. If the fluid is inert the technique can be used to measure absorption spectra of solid materials and transport properties. A version of these techniques was applied to electrochemical and photoelectrochemical systems (103). The authors describe the experimental conditions needed to separate the contributions from the temperature and concentration gradients. Once this is done the results can be correlated with the kinetics and mechanism of the electrochemical reactions. [Pg.244]


See other pages where Photothermal beam deflection spectroscopy technique is mentioned: [Pg.45]    [Pg.627]    [Pg.45]    [Pg.399]    [Pg.205]    [Pg.698]    [Pg.185]    [Pg.4446]    [Pg.1570]    [Pg.216]   
See also in sourсe #XX -- [ Pg.412 ]




SEARCH



Beam deflection

Beam techniques

Deflection

Photothermal

Photothermal beam deflection

Photothermal beam deflection spectroscopy

Photothermal deflection

Photothermal deflection spectroscopy

Photothermal spectroscopy

Spectroscopy techniques

© 2024 chempedia.info