Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photoirradiation process

The authors conjectured that the adsorption properties of the azopolymers may have originally been equal and that the differences in the photoimmobilization efficiencies could be generated by the photoirradiation process. To characterize these photoprocesses, the adsorption capabilities of the azopolymers after photoirradiation should be considered. Azopolymer films carrying Cy-5-IgG that had been immobilized by photoirradiation were held in stirred PBS to remove the antibodies from the surfaces of the azobenzene films. All the H-azopolymers exhibited much better retention rates than the equivalent CN-azopolymers. [Pg.320]

Y. Niidome et al.. Rapid s5mthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes morphological changes depending on the growing processes. Chemical Communications, 18,2376>-2 i77 (2003). [Pg.614]

The polymer = 8.19 dlg in hexafluoro-2-propanol, HFIP, solution) in Figs 1 and 2 is prepared on photoirradiation by a 500 W super-high-pressure Hg lamp for several hours and subjected to the measurements without purification. The nmr peaks in Fig. 1 (5 9.36, 8.66 and 8.63, pyrazyl 7.35 and 7.23, phenylene 5.00, 4.93, 4.83 and 4.42, cyclobutane 4.05 and 1.10, ester) correspond precisely to the polymer structure which is predicted from the crystal structure of the monomer. The outstanding sharpness of all the peaks in this spectrum indicates that the photoproduct has few defects in its chemical structure. The X-ray patterns of the monomer and polymer in Fig. 2 show that they are nearly comparable to each other in crystallinity. These results indicate a strictly crystal-lattice controlled process for the four-centre-type photopolymerization of the [l OEt] crystal. [Pg.124]

There is a limited number of examples of preparations involving the reaction of stannyl-alkali metal compounds with a substituted heteroarene, for example, Equations (58)-(60).88,197,198 Some of these reactions (e g Equation (58)) occur only with photoirradiation, showing that they involve SRN1 processes, but others may be straightforward nucleophilic heteroaromatic substitutions. [Pg.827]

Erasing of the image can be achieved by switching the photoirradiation to 525 nm to induce cis - trans isomerization of azobenzene. Since the absorbance of the cis isomer at 525 nm is weak, it takes a longer period than the image recording process. [Pg.219]

FIGURE 28. 283-MHz 19F NMR spectra of isomers of 8-F-rhodopsin in CFIAPS before (lower) and after photoirradiation (upper) (a) 11-cis (pulse delay, D5 = 5.0 s, number of acquisitions, NA = 5200, line broadening, LB = 80 Hz) (b) 9-cis (D5 = 50 ms, NA = 160000, LB = 80 Hz). Disappearance of the excess 9-cis aldehyde was due to repeated formation and bleaching of pigment during the irradiation process. Reprinted with permission from Reference 48. Copyright (1996) American Chemical Society... [Pg.126]

UV-photoirradiation causes trans-to-cis isomerization and the resulting solution exhibits a new voltammetric profile, Figure 2b, in which traces of the original waves are preceded by an anodic process (Eof = +0.03 V), which has been attributed to the single-stepped two-electron oxidation of cw-[Fc—N=N—Fc].3b This suggests that the apparent simple isomerization really involves important electronic effects in that (based on the discussions in Section 1.3, Chapter 4) one must conclude that in trans-[Fc—N=N—Fc] the two ferrocenyl units are interacting with each other, while in cz>[Fc—N=N—Fc] they do not interact. [Pg.383]

Let us now consider the formation of aryl iodides from aryl diazonium salts and potassium iodide in methanol (Singh and Kumar 1972a, 1972b). Electron-donor substituents decelerate the process as compared with benzene diazonium (the substituent is hydrogen), whereas electron acceptor substituents accelerate it. Oxygen inhibits the reaction, and photoirradiation speeds it up. As the authors pointed out, in the case of 4-nitrobenzene diazonium, the reaction leads not only to 4-iodonitrobenzene but also to nitrobenzene, elemental iodine, and formaldehyde. All of these facts support the following sequence of events ... [Pg.215]

According to this sequence, formation of cis- and trani -stilbenes is preceded by formation of a magnetosensitive ion-radical by a singlet-triplet conversion. This means that spin polarization must be observed in cis- and trani -stilbene, and the isomerization rate must depend on the intensity of the magnetic held. These predictions were conhrmed experimentally (Lyoshina et al. 1980). Hence, the ion-radical route for trans —f cis conversion is the main one under photoirradiation conditions. Until now, the mechanisms assumed for such processes have involved energy transfer and did not take into account single-electron transfer. The electron transfer takes place in reality and makes the... [Pg.277]

Some Srj I reactions can take place in the dark withont a catalyst. For example, the interaction of freons with nncleophiles in DMF at 20°C proceeds withont photoirradiation. The chain process begins when the system pressnre reaches 2 atm, in other words, when the concentration of the gaseons reagent becomes snfficient (Waksehnan and Tordenx 1984 Scheme 7.69). There is a favorable difference between the ionization potential of the nncleophile (PhS ) and EA of the substrate (CFjBr) the expressed bromide fugacity is also a favorable factor. [Pg.396]

The photocatalytic system is shown in Scheme 5, where BNAH is oxidized by the ZnP + moiety in the radical ion pair ZaP -Ceo (ki) produced upon photoirradiation of ZnP-Ceo, whereas HV " is reduced to HV by the Ceo" moiety of ZnP +-C6o ki). These individual electron-transfer processes compete, however, with the BET in the radical ion pair (/cbet)- This pathway was experimentally confirmed by photolysis of the ZnP-Ceo/BNAH/HV and ZnP-H2P-C6o/BNAH/HV + systems with visible light (433 nm) in deoxyge-nated PhCN [70], For instance. Fig. 4 depicts the steady-state photolysis in deoxy-genated PhCN, in which the HV absorption band (X ax = 402 and 615 nm) increases progressively with irradiation time. By contrast, no reaction occurs in the dark or in the absence of the photocatalyst (i.e., ZnP-Ceo or ZnP-H2P-C6o) under photoirradiation [70]. Once HV+ is generated in the photochemical reaction, it was found to be stable in deoxygenated PhCN. The stoichiometry of the reaction is established as given by Eq. (3), where BNAH acts as a two-electron donor to reduce two equivalents of HV [70] ... [Pg.239]

Powder X-ray diffraction has verified that the isomerization occurs via a crys-tal-to-crystal reaction process, and that the diffraction profiles of the crystals after photoirradiation consist of overlapped patterns of diffraction due to the crystals of 10 and 11. This indicates that the crystal domains of each isomer exist simultaneously in the crystals accompanied by crystal phase separation during the photoisomerization. Single crystal structure analysis has disclosed that the crystals of 11 as the photoproduct have a symmetry different from that of the starting crystals of 10 (Fig. 14). [Pg.299]

Photodimerization behavior of 4-formyl-, 3,4-dichloro-, and several other cinnamic acid derivatives is greatly influenced by other molecules outside of the crystal (9,10). For example, 4-formylcinnamic acid 1 crystallizes in two modifications, photoreactive and photostable forms. The photoreactive crystals of 1 (mp 249 °C), on photoirradiation at room temperature in the presence of even a trace of moisture, dimerize to crystalline dimer 2 containing one molecule of water. The continuous change of the x-ray diffraction pattern during the photodimerization indicates a typical crystal-to-crystal transformation process. On the other hand, the same crystal 1 photodimerizes into amorphous dimer 2 in the absence of water. The same cyclobutane derivative is produced in very high yield in both reactions. However, highly crystalline dimer 2 is obtained only by the photodimerization of 1 in the presence of water and is not regenerated by any attempted recrystallization procedures from various aqueous solutions of 2. [Pg.256]

We have found a rare reaction where two topochemical processes occur competitively in a single crystal, that is, a competitive photocyclo-dimerization and -polymerization in the crystal of 1,4-dicinnamoylbenzene 3 (15). On photoirradiation with a mercury lamp (100W) at 20°C for 9 h, the crystals of 3 (2.00g), dispersed in heptane (400 ml), are transformed into amorphous substances consisting of a tricyclic dimer, 21,22,23,24-tetraphenyl-1,4,11,14-tetraoxo-2 (3), 12 (13) -diethano(4,4Jparacyclophane, 4 (isolated yield 57%) (16), a mixture of oligomers (ca. 30%) and unreacted 3 (7%). [Pg.257]

CT excitation is more common in the photochemistry of coordination compounds. Besides the d — d transition (ligand field band), the CT band is often observed and the redox reaction between central metal ion and ligand is frequently induced by photoirradiation. This process has been used to initiate vinyl polymerization. [Pg.323]

In the process of photocatalysis, the electrons and holes produced on photoirradiated Ti02 powders are trapped at the particle surface to form unpaired-electron species (step (4) in Fig.D.3). Photocatalytic reactions are actually the reactions of these radicals with reactant molecules at the Ti02 surface. Electron spin resonance (ESR) spectroscopy has been used for the detection of the photoproduced radicals on Ti02 at low temperatures such as 77 K. It has been reported that photoproduced electrons are trapped at various different sites titanium atoms on the surface or inside the particles, or oxygen molecules adsorbed on the surface. On the other hand, photoproduced holes are trapped at lattice OAygen atoms near the particle surface or at surface hydroxyl groups. We analyzed these radical species for several Ti02 photocatalysts that are commercially available, and found that the differences in the photoproduced radicals resulted from different heat-treatment conditions and the reactivity with several molecules.17)... [Pg.46]

Similar redox-combined processes have been reported. For example, it has been clarified by control experiments using a photoirradiated semiconductor electrode that the photocatalytic production of indazoles from substituted azobenzenes is based on the condensation of two intermediates formed through oxidation and reduction.38 40) In the case of oxidation of substituted olefins a similar redox combined mechanism is assumed cation and anion radicals are formed by the reaction of olefin with positive hole and of 02 with excited electron, respectively, and they react to produce a 4-membered ring intermediate, a dioxethane, to undergo bond cleavages into the desired products.4l) In the photocatalytic reactions, a positive hole and excited electron must react at the neighboring surface sites of a small semiconductor particle, enabling the combination of reduction and oxidation without the addition of an electrolyte, which is an indispensable component in electrolysis. However, in the particulate system the recombination of positive hole and electron is also likely, as well as... [Pg.102]

This reaction gives us an opportunity to consider the roles of the salt additive, the solvent polarity, the stilbene concentration, the temperature level, and the intensity of photoirradiation. The reaction is facilitated by the replacement of the nonpolar solvent (benzene) by a polar one (acetonitrile), by a rise in the reaction temperature, by an increase in the stilbene concentration, by a decrease in the irradiation intensity, or by the addition of alkali metal salts. All these factors intensifying the process are related directly to the mechanism just described. It is substantial enough to analyze the effects of these factors on the efficiency of the photoreaction. [Pg.288]


See other pages where Photoirradiation process is mentioned: [Pg.263]    [Pg.411]    [Pg.311]    [Pg.167]    [Pg.263]    [Pg.411]    [Pg.311]    [Pg.167]    [Pg.138]    [Pg.267]    [Pg.174]    [Pg.92]    [Pg.218]    [Pg.218]    [Pg.85]    [Pg.271]    [Pg.183]    [Pg.264]    [Pg.301]    [Pg.151]    [Pg.263]    [Pg.130]    [Pg.263]    [Pg.321]    [Pg.52]    [Pg.236]    [Pg.100]    [Pg.204]    [Pg.211]    [Pg.270]    [Pg.168]    [Pg.385]   
See also in sourсe #XX -- [ Pg.167 , Pg.168 , Pg.170 ]




SEARCH



Photoirradiation

Top-Down Processing by UV Photoirradiation

© 2024 chempedia.info