Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photoelectron spectroscopy states

XPS X-ray photoelectron spectroscopy [131-137] Monoenergetic x-rays eject electrons from various atomic levels the electron energy spectrum is measured Surface composition, oxidation state... [Pg.315]

Electronic spectra of surfaces can give information about what species are present and their valence states. X-ray photoelectron spectroscopy (XPS) and its variant, ESC A, are commonly used. Figure VIII-11 shows the application to an A1 surface and Fig. XVIII-6, to the more complicated case of Mo supported on TiOi [37] Fig. XVIII-7 shows the detection of photochemically produced Br atoms on Pt(lll) [38]. Other spectroscopies that bear on the chemical state of adsorbed species include (see Table VIII-1) photoelectron spectroscopy (PES) [39-41], angle resolved PES or ARPES [42], and Auger electron spectroscopy (AES) [43-47]. Spectroscopic detection of adsorbed hydrogen is difficult, and... [Pg.690]

At a surface, not only can the atomic structure differ from the bulk, but electronic energy levels are present that do not exist in the bulk band structure. These are referred to as surface states . If the states are occupied, they can easily be measured with photoelectron spectroscopy (described in section A 1.7.5.1 and section Bl.25.2). If the states are unoccupied, a teclmique such as inverse photoemission or x-ray absorption is required [22, 23]. Also, note that STM has been used to measure surface states by monitoring the tunnelling current as a fiinction of the bias voltage [24] (see section BT20). This is sometimes called scamiing tuimelling spectroscopy (STS). [Pg.293]

Note that in core-level photoelectron spectroscopy, it is often found that the surface atoms have a different binding energy than the bulk atoms. These are called surface core-level shifts (SCLS), and should not be confiised with intrinsic surface states. Au SCLS is observed because the atom is in a chemically different enviromuent than the bulk atoms, but the core-level state that is being monitored is one that is present in all of the atoms in the material. A surface state, on the other hand, exists only at the particular surface. [Pg.293]

Photoelectron spectroscopy provides a direct measure of the filled density of states of a solid. The kinetic energy distribution of the electrons that are emitted via the photoelectric effect when a sample is exposed to a monocluomatic ultraviolet (UV) or x-ray beam yields a photoelectron spectrum. Photoelectron spectroscopy not only provides the atomic composition, but also infonnation conceming the chemical enviromnent of the atoms in the near-surface region. Thus, it is probably the most popular and usefiil surface analysis teclmique. There are a number of fonus of photoelectron spectroscopy in conuuon use. [Pg.307]

X-ray photoelectron spectroscopy (XPS), also called electron spectroscopy for chemical analysis (ESCA), is described in section Bl.25,2.1. The most connnonly employed x-rays are the Mg Ka (1253.6 eV) and the A1 Ka (1486.6 eV) lines, which are produced from a standard x-ray tube. Peaks are seen in XPS spectra that correspond to the bound core-level electrons in the material. The intensity of each peak is proportional to the abundance of the emitting atoms in the near-surface region, while the precise binding energy of each peak depends on the chemical oxidation state and local enviromnent of the emitting atoms. The Perkin-Elmer XPS handbook contains sample spectra of each element and bindmg energies for certain compounds [58]. [Pg.308]

The observation of a bend progression is particularly significant. In photoelectron spectroscopy, just as in electronic absorption or emission spectroscopy, the extent of vibrational progressions is governed by Franck-Condon factors between the initial and final states, i.e. the transition between the anion vibrational level u" and neutral level u is given by... [Pg.879]

Ultraviolet photoelectron spectroscopy (UPS) results have provided detailed infomiation about CO adsorption on many surfaces. Figure A3.10.24 shows UPS results for CO adsorption on Pd(l 10) [58] that are representative of molecular CO adsorption on platinum surfaces. The difference result in (c) between the clean surface and the CO-covered surface shows a strong negative feature just below the Femii level ( p), and two positive features at 8 and 11 eV below E. The negative feature is due to suppression of emission from the metal d states as a result of an anti-resonance phenomenon. The positive features can be attributed to the 4a molecular orbital of CO and the overlap of tire 5a and 1 k molecular orbitals. The observation of features due to CO molecular orbitals clearly indicates that CO molecularly adsorbs. The overlap of the 5a and 1 ti levels is caused by a stabilization of the 5 a molecular orbital as a consequence of fomiing the surface-CO chemisorption bond. [Pg.951]

XPS X-ray photoelectron spectroscopy Absorption of a photon by an atom, followed by the ejection of a core or valence electron with a characteristic binding energy. Composition, oxidation state, dispersion... [Pg.1852]

The adiabatic picture developed above, based on the BO approximation, is basic to our understanding of much of chemistry and molecular physics. For example, in spectroscopy the adiabatic picture is one of well-defined spectral bands, one for each electronic state. The smicture of each band is then due to the shape of the molecule and the nuclear motions allowed by the potential surface. This is in general what is seen in absorption and photoelectron spectroscopy. There are, however, occasions when the picture breaks down, and non-adiabatic effects must be included to give a faithful description of a molecular system [160-163]. [Pg.276]

For DTB films obtained by CVT inhomogenous distribution of out-of-framework cations and admixture capture ai e obseiwed. The aim of the present work is to use imaging X-ray photoelectron spectroscopy (i-XPS) for chemical state mapping which enable future optimization of the CVT technology. The P, O and Hg content in the DTB may be varied during the CVT. [Pg.450]

An important property of the surface behaviour of oxides which contain transition metal ions having a number of possible valencies can be revealed by X-ray induced photoelectron spectroscopy. The energy spectrum of tlrese electrons give a direct measure of the binding energies of the valence electrons on the metal ions, from which the charge state can be deduced (Gunarsekaran et al., 1994). [Pg.125]

Recently, zero kinetic energy (ZEKE) photoelectron spectroscopy has been used to study the OH/NH tautomerism of 2-pyridone in the gas phase (95JPC8608). This work, which is expected to develop considerably, provides a wealth of information about that equilibrium for the states So, Sj, and Do (cation ground state). [Pg.51]

Several UHV techniques which have been developed have not found such wide use in corrosion analysis, despite potential applicability. Ultraviolet photoelectron spectroscopy (UPS) is one of these, operating in a similar fashion to XPS (but using an ultraviolet excitation), and probing the valence electrons, rather than the core electrons of the atoms. Because the energies of the valence electrons are so very sensitive to the precise state of the atom, the technique is in principle very informative however exactly this high sensitivity renders the data difficult to interpret, particularly as a routine... [Pg.33]

Some photoelectron spectroscopy studies of /ram-polyacctylcne in the pristine [28, 46], p-lype doped [47-52J and n-lype doped [52J forms, can be found in the literature. Although no new well defined structure is detected upon doping, which would correspond to doping induced soliton levels, the density of states close to... [Pg.76]

If two different three-dimensional arrangements in space of the atoms in a molecule are interconvertible merely by free rotation about bonds, they are called conformationsIf they are not interconvertible, they are called configurations Configurations represent isomers that can be separated, as previously discussed in this chapter. Conformations represent conformers, which are rapidly interconvertible and are thus nonseparable. The terms conformational isomer and rotamer are sometimes used instead of conformer . A number of methods have been used to determine conformations. These include X-ray and electron diffraction, IR, Raman, UV, NMR, and microwave spectra, photoelectron spectroscopy, supersonic molecular jet spectroscopy, and optical rotatory dispersion (ORD) and CD measurements. Some of these methods are useful only for solids. It must be kept in mind that the conformation of a molecule in the solid state is not necessarily the same as in solution. Conformations can be calculated by a method called molecular mechanics (p. 178). [Pg.167]

Naegele JR, Ghijsen J (1985) Localization and Hybridization of 5f States in the Metallic and Ionic Bond as Investigated by Photoelectron Spectroscopy. 59160 197-262 Nag K, Bose SN (1985) Chemistry of Tetra-and Pentavalent Chromium. 63 153-197 Naletvajski RE (1993) The Hardness Based Molecular Charge Sensitivities and Their Use in the Theory of Chemical Reactivity. 80 115-186 Natan MJ, see Hoffman BM (1991) 75 85-108 Neilands JB, see Liu A (1984) 58 97-106 Neilands JB, see Chimiak A (1984) 58 89-96... [Pg.252]

Anion photoelectron spectroscopy [37, 38] amd photodetachment techniques [39] provide accurate information on electron detachment energies of negative ions. Ten closed-shell ainions considered here exhibit sharp peaks, indicative of minor or vanishing final-state nuclear rearrangements, in their photoelectron spectra. Comparisons between theory and experiment are straiightforward, for differences between vertical and adiabatic electron detachment energies (VEDEs and AEDEs, respectively) are small. [Pg.46]

Even the photoelectron spectroscopy of closed-shell molecules is valuable for the physical chemistry of radicals because a difference between the nth and the first adiabatic ionization potentials determines the excitation energy in a radical cation for a transition from the ground doublet state to the (n — 1) excited doublet state. [Pg.352]

A qualitatively different approach to probing multiple pathways is to interrogate the reaction intermediates directly, while they are following different pathways on the PES, using femtosecond time-resolved pump-probe spectroscopy [19]. In this case, the pump laser initiates the reaction, while the probe laser measures absorption, excites fluorescence, induces ionization, or creates some other observable that selectively probes each reaction pathway. For example, the ion states produced upon photoionization of a neutral species depend on the Franck-Condon overlap between the nuclear configuration of the neutral and the various ion states available. Photoelectron spectroscopy is a sensitive probe of the structural differences between neutrals and cations. If the structure and energetics of the ion states are well determined and sufficiently diverse in... [Pg.223]

In the case of selective oxidation catalysis, the use of spectroscopy has provided critical Information about surface and solid state mechanisms. As Is well known( ), some of the most effective catalysts for selective oxidation of olefins are those based on bismuth molybdates. The Industrial significance of these catalysts stems from their unique ability to oxidize propylene and ammonia to acrylonitrile at high selectivity. Several key features of the surface mechanism of this catalytic process have recently been descrlbed(3-A). However, an understanding of the solid state transformations which occur on the catalyst surface or within the catalyst bulk under reaction conditions can only be deduced Indirectly by traditional probe molecule approaches. Direct Insights Into catalyst dynamics require the use of techniques which can probe the solid directly, preferably under reaction conditions. We have, therefore, examined several catalytlcally Important surface and solid state processes of bismuth molybdate based catalysts using multiple spectroscopic techniques Including Raman and Infrared spectroscopies, x-ray and neutron diffraction, and photoelectron spectroscopy. [Pg.27]


See other pages where Photoelectron spectroscopy states is mentioned: [Pg.308]    [Pg.802]    [Pg.1306]    [Pg.1678]    [Pg.2395]    [Pg.56]    [Pg.451]    [Pg.22]    [Pg.279]    [Pg.415]    [Pg.57]    [Pg.33]    [Pg.139]    [Pg.387]    [Pg.122]    [Pg.45]    [Pg.190]    [Pg.419]    [Pg.16]    [Pg.185]    [Pg.351]    [Pg.461]    [Pg.320]    [Pg.332]    [Pg.334]    [Pg.335]    [Pg.367]    [Pg.2]   
See also in sourсe #XX -- [ Pg.765 ]




SEARCH



Excited-state dynamics, time-resolved photoelectron spectroscopy

© 2024 chempedia.info