Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemistry importance

Being able to ntn direct dynamics calculations will add an extra, important, tool to help chemists understand photochemical systems. This chapter has outlined the present standpoint of the theory and practice of such calculations showing that, although much work remains to be done, they are already bringing new insight to mechanistic studies of photochemistry. [Pg.312]

Although this reaction appears to involve only two electrons, it was shown by Mulder [57] that in fact two jc and two ct elections are required to account for this system. The three possible spin pairings become clear when it is realized that a pair of carbene radicals are formally involved. Figure 14. In practice, the conical intersection defined by the loop in Figme 14 is high-lying, so that often other conical intersections are more important in ethylene photochemistry. Flydrogen-atom shift products are observed [58]. This topic is further detailed in Section VI. [Pg.350]

The exchange of two pairs of a electrons is expected to lead to a high-lying conical intersection that is not likely to be important in the UV photochemistry of CHDN. This winds up the possibilities of loops involving two-election pair exchanges only. [Pg.353]

Conical intersections are important in molecular photochemistry, according to the current consensus, which is based on the combination of experimental and theoretical data. In this chapter, we tried to show that the location and approximate structure of conical intersections may be deduced by simple considerations of the changes in spin-pairing accompanying a reaction. We have also shown how these ideas may be put to practical computational application. [Pg.387]

The examples given above represent only a few of the many demonstrated photochemical appHcations of lasers. To summarize the situation regarding laser photochemistry as of the early 1990s, it is an extremely versatile tool for research and diagnosis, providing information about reaction kinetics and the dynamics of chemical reactions. It remains difficult, however, to identify specific processes of practical economic importance in which lasers have been appHed in chemical processing. The widespread use of laser technology for chemical synthesis and the selective control of chemical reactions remains to be realized in the future. [Pg.19]

Photochemical technology has been developed so as to increasingly exploit inorganic and organometaUic photochemistries (2,7), recognizing the importance of photoinduced electron transfer as the phenomenological basis of a majority of commercially successful photochemical technologies (5,8). [Pg.388]

Lasers can be coupled efficiently to fiber optic devices to deHver intense monochromatic light precisely to the desired region of the body, including internal organs (see Fiber optics). As in other cases of laser-induced photochemistry, biphotonic effects may be important (87). Lasers also offer the advantage of being able to concentrate the incident energy in a spectral bandpass matched to the absorption band of the sensitizer. [Pg.394]

Photochemistry. The most important photochemical processes that proceed from the excited state are geometrical isomerization and photochromic reactions. [Pg.495]

The quiaones have excellent redox properties and are thus important oxidants ia laboratory and biological synthons. The presence of an extensive array of conjugated systems, especially the a,P-unsaturated ketone arrangement, allows the quiaones to participate ia a variety of reactioas. Characteristics of quiaoae reactioas iaclude nucleophilic substitutioa electrophilic, radical, and cycloaddition reactions photochemistry and normal and unusual carbonyl chemistry. [Pg.405]

The photochemical reactions of organic compounds attracted great interest in the 1960s. As a result, many useful and fascinating reactions were uncovered, and photochemistry is now an important synthetic tool in organic chemistry. A firm basis for mechanistic description of many photochemical reactions has been developed. Some of the more general types of photochemical reactions will be discussed in this chapter. In Section 13.2, the relationship of photochemical reactions to the principles of orbital symmetry will be considered. In later sections, characteristic photochemical reactions of alkenes, dienes, carbonyl compounds, and aromatic rings will be introduced. [Pg.743]

The years from 1923 to 1938 were relatively unproductive for G. N. Lewis insofar as his own research was concerned. The applications of the electron-pair bond came largely in the areas of organic and quantum chemistry in neither of these fields did Lewis feel at home. In the early 1930s. he published a series of relatively minor papers dealing with the properties of deuterium. Then in 1939 he began to publish in the field of photochemistry. Of approximately 20 papers in this area, several were of fundamental importance, comparable in quality to the best work of his early years. Retired officially in 1945, Lewis died a year later while carrying out an experiment on fluorescence. [Pg.174]

Low-temperature, photoaggregation techniques employing ultraviolet-visible absorption spectroscopy have also been used to evaluate extinction coefficients relative to silver atoms for diatomic and triatomic silver in Ar and Kr matrices at 10-12 K 149). Such data are of fundamental importance in quantitative studies of the chemistry and photochemistry of metal-atom clusters and in the analysis of metal-atom recombination-kinetics. In essence, simple, mass-balance considerations in a photoaggregation experiment lead to the following expression, which relates the decrease in an atomic absorption to increases in diatomic and triatomic absorptions in terms of the appropriate extinction coefficients. [Pg.106]

Of the four excitation types listed above, the n— n and n— n are far more important in organic photochemistry than the other two. Compounds containing C=0 groups can be excited in both ways, giving rise to at least two peaks in the UV. [Pg.310]

Other than energy considerations, on which there is little comparative data, the most important green role for photochemistry is in improving atom economy. Although only a preliminary research result, an excellent example of this is the avoidance of the need for stoichiometric amounts of Lewis acid catalysts in the synthesis of some acylated aromatic compounds. Benzoquinone can be reacted with an aldehyde under a sunlamp to yield an acylhydroquinone in up to 88% yield. The alternative procedure would involve reaction of an acyl chloride with hydroquinone and a... [Pg.219]

An important aspect of semiconductor photochemistry is the retardation of the electron-hole recombination process through charge carrier trapping. Such phenomena are common in colloidal semiconductor particles and can greatly influence surface corrosion processes occurring particularly in small band gap materials, such... [Pg.266]

In studies of this kind, methods developed in radiation chemistry and photochemistry are often applied The methods of pulse radiolysis and flash photolysis allow one to investigate the mechanism of reactions in which free radicals, electrons and positive holes are the intermediates. In order to understand the mechanisms of processes that occur on colloidal particles it is important to know how free radicals... [Pg.115]

Through these works, Wan has conclusively demonstrated that the photodehydration of hydroxybenzyl alcohols is a general reaction, and a wide variety of quinone methides can be photogenerated and detected using this method. Quinone methide photogeneration via this method has been shown to have importance in the photochemistry of Vitamin B641,42 and in model lignins 43... [Pg.12]


See other pages where Photochemistry importance is mentioned: [Pg.739]    [Pg.802]    [Pg.915]    [Pg.1123]    [Pg.1143]    [Pg.3013]    [Pg.252]    [Pg.341]    [Pg.384]    [Pg.119]    [Pg.26]    [Pg.263]    [Pg.512]    [Pg.388]    [Pg.388]    [Pg.391]    [Pg.277]    [Pg.273]    [Pg.253]    [Pg.130]    [Pg.81]    [Pg.84]    [Pg.429]    [Pg.1]    [Pg.232]    [Pg.183]    [Pg.263]    [Pg.21]    [Pg.159]    [Pg.417]    [Pg.13]    [Pg.14]    [Pg.318]    [Pg.89]   


SEARCH



Photochemistry important accomplishments

Photochemistry of Atmospherically Important Species

© 2024 chempedia.info