Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphonium salts conditions

Benzyltriethylammonium chloride [56-37-1] is the most widely used catalyst under strongly basic conditions. Methyltrioctylammonium chloride [5137-55-3] (Ahquat 336, Adogen 464) is probably the least expensive catalyst. Others of high activity and moderate price are tetra- -butylammonium chloride [1112-67-0] bromide [1643-19-2] hydrogen sulfate [32503-27-8], tetra- -butylphosphonium chloride [2304-30-5], and other phosphonium salts of a similar number of C atoms. Many other onium salts can also be utilized. [Pg.187]

The present preparation illustrates a general and convenient method for the fnms-iodopropenylation of an alkyl halide.4 The iodopropenyl-ated material is not usually stable but is a useful synthetic intermediate. For example, it forms a stable crystalline triphenylphosphonium salt for use in the Wittig reaction, and under Kornblum reaction conditions (DMS0-NaHC03, 130°, 3 minutes) it gives an (E)-a,/9-unsaturated aldehyde.4 In addition to the phosphonium salt described in Note 15, the following have been prepared (4-p-methoxyphenyl-2-butenyl)-triphenylphosphonium iodide [Phosphonium, [4-(4-methoxyphenyl)-2-butenyl]triphenyl-, iodide], m.p. 123-127° (2-octenyl)triphenyl-phosphonium iodide [Phosphonium, 2-octenyltriphenyl-, iodide], m.p. 98° and (2-octadecenyl)triphenylphosphonium iodide [Phosphonium, 2-octadecenyltriphenyl-, iodide], m.p. 50°. [Pg.81]

Wittig reactions are versatile and useful for preparing alkenes, under mild conditions, where the position of the double bond is known unambiguously. The reaction involves the facile formation of a phosphonium salt from an alkyl halide and a phosphine. In the presence of base this loses HX to form an ylide (Scheme 1.15). This highly polar ylide reacts with a carbonyl compound to give an alkene and a stoichiometric amount of a phosphine oxide, usually triphenylphosphine oxide. [Pg.28]

This accounts for the considerable discrepancy between the alkene Z/E ratio found on work-up and the initial oxaphosphetan ais/trans ratio. By approaching the problem from the starting point of the diastereomeric phosphonium salts (19) and (20), deprotonation studies and crossover experiments showed that the retro-Wittig reaction was only detectable with the erythreo isomer (19) via the cis-oxaphosphetan (17). Furthermore, it was shown that under lithium-salt-free conditions, mixtures of (19) and (20) exhibited stereochemical drift because of a synergistic effect (of undefined mechanism) between the oxaphosphetans (17) and (18) during their decomposition to alkenes. [Pg.58]

The ylide obtained from (methyl)triphenylphosphonium bromide reacts with morpholine derivatives 597 to give phosphonium salts 598 which upon treatment with -butyllithium are converted to new ylides 599. In a reaction with aldehydes, ylides 599 form iV-(l,3-disubstituted allyl)-morpholines 602 (Scheme 94) <1996AQ138>. Another less common nucleophile that can be used for substitution of the benzotriazolyl moiety in Af-(a-aminoalkyl)benzotriazoles is an adduct of iV-benzylthiazolium salt to an aldehyde which reacts with compounds 597 to produce adducts 600. Under the reaction conditions, refluxing in acetonitrile, salts 600 decompose to liberate aminoketones 601 <1996H(42)273>. [Pg.70]

The olefin metathesis of 3-hydroxy-4-vinyl-l,2,5-thiadiazole 112 and a McMurry coupling reaction (Ti3+ under reductive conditions) of the aldehyde 114 were both unsuccessful <2004TL5441>. An alternative approach via a Wittig reaction was successful. With the use of the mild heterogenous oxidant 4-acetylamino-2,2,6,6-tetramethyl-piperidine-l-oxoammonium perfluoroborate (Bobbitt s reagent), the alcohol 113 was converted into the aldehyde 114. The phosphonium salt 115 also obtained from the alcohol 113 was treated with the aldehyde 114 to give the symmetrical alkene 116 (Scheme 16) <2004TL5441>. [Pg.537]

In basic media, the ammonium salts are generally far more susceptible to degradation, but are more stable than the corresponding phosphonium salts [47]. This observation contrasts with their stabilities under neutral conditions, where the phosphonium salts are the more stable. In addition to reactions of the type shown in Scheme 1.2, the Hofmann degradation of symmetrical tetraalkylammonium salts is... [Pg.5]

Bis-acyl sulphides are obtained in only low yield by the standard reaction of sodium sulphide with an acyl chloride, but the addition of Adogen results in their viable synthesis with yields >70%. Examples using quaternary phosphonium salts provide the optimum yields (> 90%) [63]. Similarly, thiophenols have been benzoylated using benzoyl chloride under basic conditions in the presence of ammonium salts [12]. [Pg.141]

The general concept of phase transfer catalysis applies to the transfer of any species from one phase to another (not just anions as illustrated above), provided a suitable catalyst can be chosen, and provided suitable phase compositions and reaction conditions are used. Most published work using PTC deals only with the transfer of anionic reactants using either quaternary ammonium or phosphonium salts, or with crown ethers in liquid-liquid or liquid-solid systems. Examples of the transfer and reaction of other chemical species have been reported(24) but clearly some of the most innovative work in this area has been done by Alper and his co-workers, as described in Chapter 2. He illustrates that gas-liquid-liquid transfers with complex catalyst systems provide methods for catalytic hydrogenations with gaseous hydrogen. [Pg.2]

Reactions of butenylidene-bis-phosphonium salts with PCl3/triethyl-amine under similar conditions proceeded predominantly via base-induced fragmentation to triphenyl phosphine and polymeric products of unknown constitution (Scheme 2). Monocyclic bis-phosphonio-phospho-lides formed only as spectroscopically detectable but hardly isolable byproducts [18, 19]. [Pg.179]

Tellurophosphoranes, obtained through a transylidation reaction between tellurenyl halides and phosphoranes, react with aldehydes to give the expected vinylic tellurides as an E Z isomeric mixture (method a). One other methodology involves the treatment of equimolar amounts of phenyl tellurenyl bromide and phosphonium salts with t-BuOK followed by an aldehyde (method b). Under these lithium-salt-free conditions, (Z)-vinylic tellurides are the main products. ... [Pg.91]

After these results had established the feasibility of generating and utilizing a carbohydrate phosphorane, the two systems that had been reported earlier were examined in order to determine if similar conditions would allow them to undergo the Wittig reaction. The ylide derived from phosphonium salt I condensed with both benz-aldehyde and U-chlorobenzaldehyde to produce good yields of olefinic products Villa and Vlllb. The ylide derived from phosphonium salt II also was successfully condensed with benzaldehyde, but the yield of IX was only 30 , presumably because of its extremely poor solubility even in an HMPA-THF solvent mixture. Both of these systems supported the tenet that it was possible to use unstabilized carbohydrate phosphoranes if the conditions are proper and if the g-oxygen is attached to the carbohydrate through another set of bonds. [Pg.96]

Tetrakis( l-hydroxyalkyl)phosphonium salts were prepared from phosphine and various aliphatic aldehydes using similar reaction conditions... [Pg.41]

The dependence of kobsd on stirring speed for Br-I exchange reactions with polymer-supported crown ethers 34 and 35 has been determined under the same conditions as with polymer-supported phosphonium salts 1 and 4149). Reaction conditions were 90 °C, 0.02 molar equiv of 100-200 mesh catalyst, 16-17% RS, 2% CL, 20 mmol of 1-bromooctane, 200 mmol of KI, 20 ml of toluene, and 30 ml of water. Reaction rates with 34 and 35 increased with increased stirring speed up to 400 rpm, and were constant above that value. This result resembles that with polymer-supported onium ion catalysts and indicates that mass transfer as a limiting factor can be removed in experiments carried out at stirring speeds of 500-600 rpm, whatever kind of polymer-supported phase transfer catalyst is used. [Pg.84]


See other pages where Phosphonium salts conditions is mentioned: [Pg.28]    [Pg.126]    [Pg.211]    [Pg.216]    [Pg.30]    [Pg.724]    [Pg.119]    [Pg.16]    [Pg.225]    [Pg.300]    [Pg.171]    [Pg.77]    [Pg.93]    [Pg.499]    [Pg.229]    [Pg.231]    [Pg.43]    [Pg.501]    [Pg.1006]    [Pg.330]    [Pg.115]    [Pg.23]    [Pg.31]    [Pg.288]    [Pg.82]    [Pg.134]    [Pg.3]    [Pg.131]    [Pg.251]    [Pg.260]    [Pg.70]    [Pg.33]    [Pg.49]    [Pg.135]    [Pg.430]    [Pg.7]   
See also in sourсe #XX -- [ Pg.44 ]




SEARCH



Phosphonium salts

Salt conditions

© 2024 chempedia.info