Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phospholipids interaction with protein

The structure of the interfacial layers in food colloids can be quite complex as these are usually comprised of mixtures of a variety of surfactants and all are probably at least partly adsorbed at interfaces which even individually, can form complex adsorption layers. The layers can be viscoelastic. Phospholipids form multi-lamellar structures at the interface and proteins, such as casein, can adsorb in a variety of conformations [78]. Lecithins not only adsorb also at interfaces, but can affect the conformations of adsorbed casein. The situation in food emulsions can be complicated further by the additional presence of solid particles. For example, the fat droplets in homogenized milk are surrounded by a membrane that contains phospholipid, protein and semi-solid casein micelles [78,816], Similarly, the oil droplets in mayonnaise are partly coated with granular particles formed from the phospho and lipo-protein components of egg yolk [78]. Finally, the phospholipids can also interact with proteins and lecithins to form independent vesicles [78], thus creating an additional dispersed phase. [Pg.302]

Skin tumor promoters bring about a number of other important epigenetic changes in the skin such as membrane and differentiation alterations and an increase in protease activity, cAMP independent protein kinase activity and phospholipid synthesis (.31). In addition, the skin tumor promoters cause a decrease in epidermal superoxide dismutase and catalase activities as well as a decrease in the number of glucocorticoid receptors (.31). Some skin promoters appear to have a common mode of cellular action - via binding to the natural cellular substrate for diacylglycerol-a phospholipid, calcium-dependent kinase called protein kinase C. Promoters which interact with protein kinase C include 12-H-tetradecanoylphorbol-... [Pg.86]

Phospholipid contents are very similar (about 1 to 2% dry matter) in microbial, plant, and animal tissues. If the content of neutral lipids is low, phospholipids may account for 20 to 40% of lipid extracts (e.g., in marine invertebrates). In egg yolk, 23% of the total lipids are phospholipids and other polar lipids (Kuksis, 1985). On the contfary, in adipose tissue or in oilseeds, the content of phospholipids is between 1 and 3% of total lipids. In oilseeds rich in oil (such as in rapeseed), it is lower than in oilseed with lower oil content (such as soybeans) when the results are expressed in % oil content, but much the same if the content is expressed in terms of total dry matter of the oilseed. Phospholipids are mainly extracted by nonpolar solvents, together with other lipids, and are obtained in the crude oil. However, in the original material, phospholipids are primarily bound to proteins (e.g., in membranes) or may be bound to other tissue components for example, phospholipids interact with chlorophyll pigments, where they may form complexes between the magnesium ion of the chlorophyll molecule and the phospho group of the phospholipids. [Pg.93]

Therefore, to understand the behavior of food emulsions, we need to know as much as possible about these types of emulsifiers, because fliey may not behave exactly similarly to classical small-molecule emulsifiers. For example, phospholipid molecules can interact with each other to form lamellar phases or vesicles they may interact with neutral lipids to form a mono- or multi-layer around the lipid droplets, or they may interact with proteins which are either adsorbed or free in solution. Any or all of these interactions may occur in one food emulsion. The properties of the emulsion system depend on which behavior pattern predominates. Unfortunately for those who have to formulate food emulsions, it is rarely possible to consider the emulsion simply as oil coated with one or a mixture of surfactants. Almost always there are other components whose properties need to be considered along with those of the emulsion droplets themselves. For example, various metal salts may be included in the formulation (e.g. Ca " is nearly always present in food products derived from milk ingredients), and there may also be hydrocolloids present to increase the viscosity or yield stress of the continuous phase to delay or prevent creaming of the emulsion. In addition, it is very often the case, in emulsions formulated using proteins, that some of the protein is free in solution, having either not adsorbed at all or been displaced by other surfactants. Any of these materials (especially the metal salts and the proteins) may interact with the molecules... [Pg.207]

These distinctions and trends are by no means exclusive, mixtures are the norm and competitive adsorption is prevalent. Caseinate, one of the most commonly used surfactants in the food industry, is itself a mixture of interacting proteins of varying surface activity [128]. The phospholipids can also interact with proteins and lecithins to form independent vesicles [34], thus creating an additional dispersed phase. [Pg.101]

When most lipids circulate in the body, they do so in the form of lipoprotein complexes. Simple, unesterified fatty acids are merely bound to serum albumin and other proteins in blood plasma, but phospholipids, triacylglycerols, cholesterol, and cholesterol esters are all transported in the form of lipoproteins. At various sites in the body, lipoproteins interact with specific receptors and enzymes that transfer or modify their lipid cargoes. It is now customary to classify lipoproteins according to their densities (Table 25.1). The densities are... [Pg.840]

Tyrosine phosphorylated IRS interacts with and activates PI 3-kinase [3]. Binding takes place via the SRC homology 2 (SH2) domain of the PI 3-kinase regulatory subunit. The resulting complex consisting of INSR, IRS, and PI 3-kinase facilitates interaction of the activated PI 3-kinase catalytic subunit with the phospholipid substrates in the plasma membrane. Generation of PI 3-phosphates in the plasma membrane reemits phospholipid dependent kinases (PDKl and PDK2) which subsequently phosphorylate and activate the serine/threonine kinase Akt (synonym protein... [Pg.634]

Protein 4.1, a globular protein, binds tightly to the tail end of spectrin, near the actin-binding site of the latter, and thus is part of a protein 4.1-spectrin-actin ternary complex. Protein 4.1 also binds to the integral proteins, glycophorins A and C, thereby attaching the ternary complex to the membrane. In addition, protein 4.1 may interact with certain membrane phospholipids, thus connecting the lipid bilayer to the cytoskeleton. [Pg.617]

The intracellular and plasma membranes have a complex structure. The main components of a membrane are lipids (or phospholipids) and different proteins. Lipids are fatlike substances representing the esters of one di- or trivalent alcohol and two aliphatic fatty acid molecules (with 14 to 24 carbon atoms). In phospholipids, phosphoric acid residues, -0-P0(0 )-O-, are located close to the ester links, -C0-0-. The lipid or phospholipid molecules have the form of a compact polar head (the ester and phosphate groups) and two parallel, long nonpolar tails (the hydrocarbon chains of the fatty acids). The polar head is hydrophihc and readily interacts with water the hydrocarbon tails to the... [Pg.575]

New developments in immobilization surfaces have lead to the use of SPR biosensors to monitor protein interactions with lipid surfaces and membrane-associated proteins. Commercially available (BIACORE) hydrophobic and lipophilic sensor surfaces have been designed to create stable membrane surfaces. It has been shown that the hydrophobic sensor surface can be used to form a lipid monolayer (Evans and MacKenzie, 1999). This monolayer surface can be used to monitor protein-lipid interactions. For example, a biosensor was used to examine binding of Src homology 2 domain to phosphoinositides within phospholipid bilayers (Surdo et al., 1999). In addition, a lipophilic sensor surface can be used to capture liposomes and form a lipid bilayer resembling a biological membrane. [Pg.103]

To diffuse rapidly in the plane of the membrane (lateral diffusion), a molecule must simply move around in the lipid environment (including the polar head groups). It need not change how it interacts with phospholipids or with water since it is constantly exposed to pretty much the same environment. Lateral diffusion can be slowed (or prevented) by interactions between membrane proteins and the cellular cytoskeleton. This spatially restricts a plasma membrane protein to a localized environment. [Pg.41]


See other pages where Phospholipids interaction with protein is mentioned: [Pg.7]    [Pg.390]    [Pg.129]    [Pg.76]    [Pg.5]    [Pg.347]    [Pg.141]    [Pg.390]    [Pg.208]    [Pg.147]    [Pg.313]    [Pg.452]    [Pg.419]    [Pg.237]    [Pg.406]    [Pg.15]    [Pg.805]    [Pg.63]    [Pg.175]    [Pg.677]    [Pg.192]    [Pg.212]    [Pg.218]    [Pg.485]    [Pg.592]    [Pg.5]    [Pg.842]    [Pg.488]    [Pg.489]    [Pg.696]    [Pg.697]    [Pg.971]    [Pg.288]    [Pg.729]    [Pg.177]    [Pg.118]    [Pg.249]    [Pg.140]    [Pg.200]   
See also in sourсe #XX -- [ Pg.67 , Pg.164 , Pg.206 , Pg.208 ]




SEARCH



Interaction of proteins with phospholipid

Phospholipid interacting proteins

Phospholipids proteins

Protein interactions with phospholipid membranes and surfaces

With proteins, interactions

© 2024 chempedia.info