Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phospholipid molecules model membranes

Fig. 4. Schematic representation of transient method employed by Devaux and McConnell9 to measure the rates of lateral diffusion of phospholipids in model membranes. The upper diagram represents a concentrated patch of labels at the beginning of the experiment, time f = 0. At later times f>0, the molecules diffuse laterally, as shown in the lower two drawings. The paramagnetic resonance spectra depend on the spin-label concentration in the plane of the membrane, and an analysis of the time dependence of these spectra yielded the diffusion constant. [Reprinted with permission from P. Devaux and H. M. McConnell, J. Am. Chem. Soc., 94, 4475 (1972). Copyright by American Chemical Society.]... Fig. 4. Schematic representation of transient method employed by Devaux and McConnell9 to measure the rates of lateral diffusion of phospholipids in model membranes. The upper diagram represents a concentrated patch of labels at the beginning of the experiment, time f = 0. At later times f>0, the molecules diffuse laterally, as shown in the lower two drawings. The paramagnetic resonance spectra depend on the spin-label concentration in the plane of the membrane, and an analysis of the time dependence of these spectra yielded the diffusion constant. [Reprinted with permission from P. Devaux and H. M. McConnell, J. Am. Chem. Soc., 94, 4475 (1972). Copyright by American Chemical Society.]...
A further partihon system based on the use of liposomes, and commercialized under the name Transil [110, 111], has shown its utiUty as a UpophiUcity measure in PBPK modeling [112]. Fluorescent-labeled liposomes, called fluorosomes, are another means of measuring the rate of penetration of small molecules into membrane bilayers [113, 120]. Similarly, a colorimetric assay amenable to HTS for evaluating membrane interactions and penetrahon has been presented [116]. The platform comprises vesicles of phospholipids and the chromahc Upid-mimehc polydiacetylene. The polymer undergoes visible concentrahon-dependent red-blue transformahons induced through interactions of the vesicles with the studied molecules. [Pg.40]

Using liposomes made from phospholipids as models of membrane barriers, Chakrabarti and Deamer [417] characterized the permeabilities of several amino acids and simple ions. Phosphate, sodium and potassium ions displayed effective permeabilities 0.1-1.0 x 10 12 cm/s. Hydrophilic amino acids permeated membranes with coefficients 5.1-5.7 x 10 12 cm/s. More lipophilic amino acids indicated values of 250 -10 x 10-12 cm/s. The investigators proposed that the extremely low permeability rates observed for the polar molecules must be controlled by bilayer fluctuations and transient defects, rather than normal partitioning behavior and Born energy barriers. More recently, similar magnitude values of permeabilities were measured for a series of enkephalin peptides [418]. [Pg.74]

Natural biological membranes consist of lipid bilayers, which typically comprise a complex mixture of phospholipids and sterol, along with embedded or surface associated proteins. The sterol cholesterol is an important component of animal cell membranes, which may consist of up to 50 mol% cholesterol. As cholesterol can significantly modify the bilayer physical properties, such as acyl-chain orientational order, model membranes containing cholesterol have been studied extensively. Spectroscopic and diffraction experiments reveal that cholesterol in a lipid-crystalline bilayer increases the orientational order of the lipid acyl-chains without substantially restricting the mobility of the lipid molecules. Cholesterol thickens a liquid-crystalline bilayer and increases the packing density of lipid acyl-chains in the plane of the bilayer in a way that has been referred to as a condensing effect. [Pg.186]

The plasma membrane, a phospholipid bilayer in which cholesterol and protein molecules are embedded. The bottom layer, which faces the cytoplasm, has a slightly different phospholipid composition from that of the top layer, which faces the external medium. While phospholipid molecules can readily exchange laterally within their own layer, random exchange across the bilayer is rare. Both globular and helical kinds of protein traverse the bilayer. Cholesterol molecules tend to keep the tails of the phospholipids relatively fixed and orderly in the regions closest to the hydrophilic heads the parts of the tails closer to the core of the membrane move about freely. This model is not believed to apply to blood or lymph capillaries. (Reprinted with permission from Bretscher MS. The molecules of the cell membrane. Sci Am 1985 253 104. Copyright 1985 by Scientific American, Inc. All rights reserved.)... [Pg.22]

A very brief description of biological membrane models, and model membranes, is given. Studies of lateral diffusion in model membranes (phospholipid bilayers) and biological membranes are described, emphasizing magnetic resonance methods. The relationship of the rates of lateral diffusion to lipid phase equilibria is discussed. Experiments are reported in which a membrane-dependent immunochemical reaction, complement fixation, is shown to depend on the rates of diffusion of membrane-bound molecules. It is pointed out that the lateral mobilities and distributions of membrane-bound molecules may be important for cell surface recognition. [Pg.249]

The interactions of TDZ (6) with model membranes composed of different phospholipids were also studied by the same group [78]. Calorimetric studies demonstrated that TDZ (6) altered the thermotropic properties of negatively charged DMPC membranes to a larger extent than of zwitterionic phospholipids (PC and PE). The character of the drug-induced changes of the transition parameters of all studied lipids indicated that TDZ (6), similarly to other phenothiazine derivatives, was likely to be localized close to the po-lar/apolar interface of the bilayers. Experiments in which fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was employed revealed that TDZ (6) reduced the mobility of lipid molecules in a concentration-dependent manner and thus decreased membrane fluidity. The influence of TDZ (6) on isolated... [Pg.238]

Pulse field gradient (PFG) NMR spectroscopy is now generally regarded as the method of choice for measuring the translational diffusion coefficients of molecules of virtually any type under many conditions (48). H, H, F, and P variants of this method have been used successfully to study lateral diffusion of cholesterol, phospholipids, and water in model membranes (49,50). This technique introduces two identical gradient pulses of the external magnetic field into the standard spin-echo NMR... [Pg.1013]

Multilamellar vesicles are the most commonly used model membrane systems. It is important to note that in order to simplify the parameters of the study, in most cases the model membranes are prepared exclusively ftom phospholipids and they do not contain other molecules, usually present in biological membranes that have an important role in their fiinctionality. The complexity of real membranes is not close to the artificial model membranes and these systems, i.e. liposomes, are not an absolute analog of the biological membranes. [Pg.191]


See other pages where Phospholipid molecules model membranes is mentioned: [Pg.365]    [Pg.422]    [Pg.302]    [Pg.371]    [Pg.211]    [Pg.86]    [Pg.353]    [Pg.115]    [Pg.371]    [Pg.390]    [Pg.129]    [Pg.376]    [Pg.163]    [Pg.588]    [Pg.230]    [Pg.232]    [Pg.234]    [Pg.235]    [Pg.238]    [Pg.248]    [Pg.251]    [Pg.325]    [Pg.76]    [Pg.107]    [Pg.115]    [Pg.48]    [Pg.685]    [Pg.11]    [Pg.418]    [Pg.235]    [Pg.365]    [Pg.367]    [Pg.250]    [Pg.1003]    [Pg.173]    [Pg.173]    [Pg.2726]    [Pg.390]    [Pg.176]    [Pg.569]    [Pg.103]   
See also in sourсe #XX -- [ Pg.110 , Pg.118 ]




SEARCH



Membrane model

Membrane modeling

Membranes modelling

Model membranes, phospholipids

Molecules membrane

Molecules modeling

Phospholipidic membrane

© 2024 chempedia.info