Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphines vinylation

Hydrometallation is catalyzed by Pd. Hydroboration of l-buten-2-methyl-3-yne (197) with catecholborane (198) gives the 1,4-adduct 199 with 84% selectivity. The ratio of Pd to phosphine (1 1.5) is important[l 10]. The vinyl sulfide 201 is prepared by a one-pot reaction of the thioalkyne 200 via a Pd-catalyzed hydroborution-coupling sequence using dppf as a ligand[l 11]. [Pg.495]

Lithiation at C2 can also be the starting point for 2-arylatioii or vinylation. The lithiated indoles can be converted to stannanes or zinc reagents which can undergo Pd-catalysed coupling with aryl, vinyl, benzyl and allyl halides or sulfonates. The mechanism of the coupling reaction involves formation of a disubstituted palladium intermediate by a combination of ligand exchange and oxidative addition. Phosphine catalysts and salts are often important reaction components. [Pg.98]

Many of these reactions are reversible, and for the stronger nucleophiles they usually proceed the fastest. Typical examples are the addition of ammonia, amines, phosphines, and bisulfite. Alkaline conditions permit the addition of mercaptans, sulfides, ketones, nitroalkanes, and alcohols to acrylamide. Good examples of alcohol reactions are those involving polymeric alcohols such as poly(vinyl alcohol), cellulose, and starch. The alkaline conditions employed with these reactions result in partial hydrolysis of the amide, yielding mixed carbamojdethyl and carboxyethyl products. [Pg.133]

Aqueous mineral acids react with BF to yield the hydrates of BF or the hydroxyfluoroboric acids, fluoroboric acid, or boric acid. Solution in aqueous alkali gives the soluble salts of the hydroxyfluoroboric acids, fluoroboric acids, or boric acid. Boron trifluoride, slightly soluble in many organic solvents including saturated hydrocarbons (qv), halogenated hydrocarbons, and aromatic compounds, easily polymerizes unsaturated compounds such as butylenes (qv), styrene (qv), or vinyl esters, as well as easily cleaved cycHc molecules such as tetrahydrofuran (see Furan derivatives). Other molecules containing electron-donating atoms such as O, S, N, P, etc, eg, alcohols, acids, amines, phosphines, and ethers, may dissolve BF to produce soluble adducts. [Pg.160]

Use of alcohol as a solvent for carbonylation with reduced Pd catalysts gives vinyl esters. A variety of acrylamides can be made through oxidative addition of carbon monoxide [630-08-0] CO, and various amines to vinyl chloride in the presence of phosphine complexes of Pd or other precious metals as catalyst (14). [Pg.414]

For many years a major route to the production of vinyl chloride was the addition of hydrochloric acid to acetylene (Figure 12.5). The acetylene is usually prepared by addition of water to calcium carbide, which itself is prepared by heating together coke and lime. To remove impurities such as water, arsine and phosphine the acetylene may be compressed to 15 Ibf/in (approx. 100 kPa), passed through a scrubbing tower and chilled to -10°C to remove some of the water present and then scrubbed with concentrated sulphuric acid. [Pg.314]

The more reactive fluoroketones also react with reagents prepared by the action of carbon tetrachloride on a tnalkylphosphine to form a vinyl phosphine oxide [id] (equation 29)... [Pg.632]

In related work, 3-chloromethylcephems were coupled with tributyl(tnfluoro-vinyl)stannane catalyzed by tri(2-furyl)phosphine palladium(O) [7S, 19] (equation 13). [Pg.673]

In a more recent publication the same group mentions that Ag(I) salts in combination with chiral phosphine ligands can catalyze the 1,3-dipolar cycloaddition involving the azomethine precursor 64b and methyl vinyl ketone (Scheme 6.43) [87]. The reaction, which presumably also required a stoichiometric amount of the catalyst, proceeds to give 65b in a good yield with 70% ee. [Pg.242]

Apart from tertiary amines, the reaction may be catalyzed by phosphines, e.g. tri- -butylphosphine or by diethylaluminium iodide." When a chiral catalyst, such as quinuclidin-3-ol 8 is used in enantiomerically enriched form, an asymmetric Baylis-Hillman reaction is possible. In the reaction of ethyl vinyl ketone with an aromatic aldehyde in the presence of one enantiomer of a chiral 3-(hydroxybenzyl)-pyrrolizidine as base, the coupling product has been obtained in enantiomeric excess of up to 70%, e.g. 11 from 9 - -10 ... [Pg.29]

A number of tertiary phosphine ligands have been synthesized that also contain an alkene linkage capable of coordinating to a metal. A good example of this kind of coordination is formed in the complex of (tri-o-vinyl-phenyl)phosphine (Figure 2.29) with each alkene acting as a two-electron donor, a noble gas configuration is achieved [67],... [Pg.105]

There is no way in which dehydration of alcohols can be used to prepare triple bonds gem-diols and vinylic alcohols are not normally stable compounds and vic-diols give either conjugated dienes or lose only 1 mol of water to give an aldehyde or ketone. Dienes can be prepared, however, by heating alkynyl alcohols with triphenyl phosphine. ... [Pg.1327]

The diamagnetic ylide complexes 34 have been obtained from the reaction of electron-deficient complexes [MoH(SR)3(PMePh2)] and alkynes (HC=CTol for the scheme), via the formal insertion of the latter into the Mo-P bond. The structural data show that 34 corresponds to two different resonance-stabilized ylides forms 34a (a-vinyl form) and 34b (carbene ylide form) (Scheme 17) [73]. Concerning the group 7 recent examples of cis ylide rhenium complexes 36 cis-Me-Re-Me) have been reported from the reaction of the corresponding trans cationic alkyne derivatives 35 with PR" via a nucleophilic attack of this phosphine at the alkyne carbon. [Pg.54]

Mixed phosphine isocyanide complexes [Co(CNR)3phos2] and [Co-(CNR)4diphos], (the former were alluded to earlier (ref. 90, p. 185)), are reported to be obtained from Co(phos)2Cl2 and isocyanides (50). A vinyl isocyanide complex [Co(CNC2H3)5] is reported (94). [Pg.64]

Both MeMn(CO)5 and PhMn(CO)5 react with acetylenes to yield vinyl ketone tetracarbonyl complexes, most likely via a pathway involving CO insertion [Eq. (18)] 14, 36). Reactions of these same alkyls with 1,3-dienes may proceed similarly 16, 95, 96). The chelating ligand o-styryldiphenyl-phosphine (L—L) converts MeMn(CO)j into two products 25) whose structures (XXII and XXIII) were elucidated by X-ray crystallography 24). An unusual migration of COMe onto L—L occurs subsequently to the initial insertion step. [Pg.125]

Hydroformylation of vinyl acetate to give mainly the branched product in >90% ee has been achieved using a rhodium catalyst containing binaphthol and phosphine ligands anchored to polystyrene. [Pg.119]

A. Nucleophilic Attack on Carbon. —(/) Activated Olefins. A study of triarylphosphine-catalysed dimerization of acrylonitrile to 2-methylene-glutaronitrile (26) and 1,4-dicyano-l-butene (27) has established a balance between phosphine nucleophilicity and protolytic strength of the solvent. The reaction of methyl vinyl ketone with triphenylphosphine in triethyl-silanol gave only 3-methylene-2,6-heptadienone (28). [Pg.5]

Dichloroethylphosphine has been shown to react with methyl vinyl ketone to form 2-ethyl-5-methyl-A -l,2-oxaphospholen-2-oxide (25), which has been converted to (26) by chlorination in the presence of base. The same phosphine adds to methyl acrylate in the presence of acetic acid to give the phosphine oxide (27). Further examples have appeared of the reactions of the phenylhydrazones of methyl ketones with phosphorus trichloride to produce the heterocycles (28). [Pg.44]

The reaction of aldehydes with carbon tetrachloride in the presence of excess tris(dimethylamino)phosphine has been used to prepare vinyl dihalides in yields of 50—70%. It is suggested that the reaction takes place via an intermediate salt (77), although the formation of this salt seems more likely to be analogous to the Perkow reaction than to involve attack on oxygen. [Pg.83]


See other pages where Phosphines vinylation is mentioned: [Pg.331]    [Pg.331]    [Pg.153]    [Pg.112]    [Pg.184]    [Pg.317]    [Pg.55]    [Pg.41]    [Pg.85]    [Pg.560]    [Pg.560]    [Pg.563]    [Pg.127]    [Pg.167]    [Pg.210]    [Pg.441]    [Pg.40]    [Pg.931]    [Pg.190]    [Pg.199]    [Pg.345]    [Pg.59]    [Pg.5]    [Pg.274]    [Pg.283]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Phosphination vinyl halides

Phosphination vinyl triflates

Phosphine 2- vinyl] diphenyl

Phosphine vinyl

Phosphine, triarylsynthesis vinyl substitutions

Vinyl halides, reactions with phosphine

Vinyl phosphine oxide, synthesis

Vinyl phosphine oxides

Vinyl phosphine oxides, asymmetric reactions

© 2024 chempedia.info