Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenolic plywood

In 1932, the first plywood hot press was installed in the United States. This marked the advent of the large market for phenolic wood adhesives [51]. By 1962, the volume of phenolic wood adhesives had reached about 33 kt (solids) in the U.S. Growth was accelerated in 1962 with the development of Southern pine plywood. By 1979, the consumption of phenolic plywood adhesives exceeded 220 kt or about 25% of phenolic resin production [51]. Phenolic adhesive demand for wood products took another jump in 1964 with the commencement of waferboard production. The first oriented strandboard (OSB) plants were built in 1981 [52]. OSB soon replaced most of the waferboard production and began a period of... [Pg.871]

Alkaline-dispersed amylaceous materials in phenolic plywood adhesives for improved assembly time tolerance and prepress tack. [Pg.14]

Partially insolubilized animal blood as a very efficient foaming agent in air-extended phenolic plywood glues. The blood solids are also considered active exterior adhesive solids. [Pg.14]

PB = particleboard WB waferboard PP = phenolic plywood SWPW softwood plywood. [Pg.30]

Sundin (14) also measured formaldehyde emissions from a sample of phenolic plywood in a static chamber (no air exchange) with a volume of 15. The temperature was maintained at 20 C and the... [Pg.32]

Solid wood (phenolic-resin-bonded beech plywood, phenolic plywood as a construction material)... [Pg.167]

For exterior appHcations, where water exposure is expected, phenol—formaldehyde (PF) or phenol—resorcinol—formaldehyde (PRF) adhesives are used. Only small quantities of this type of hardwood plywood are made, primarily for marine use. [Pg.382]

The adhesive used in virtually all softwood plywood has a phenol—formaldehyde (PF) base to provide an exterior-grade, durable, waterproof bond. Thus, most grades of plywood can be used in stmctural appHcations. A very small percentage of softwood plywood is made using interior-grade adhesive systems, and this material is used in interior cabinetry, furniture, and shelving. [Pg.384]

Amino and Phenolic Resins. The largest use of formaldehyde is in the manufacture of urea—formaldehyde, phenol—formaldehyde, and melamine—formaldehyde resins, accounting for over one-half (51%) of the total demand (115). These resins find use as adhesives for binding wood products that comprise particle board, fiber board, and plywood. Plywood is the largest market for phenol—formaldehyde resins particle board is the largest for urea—formaldehyde resins. Under certain conditions, urea—formaldehyde resins may release formaldehyde that has been alleged to create health or environmental problems (see Amino RESINS AND PLASTICS). [Pg.497]

Phenohc resins are produced by the condensation of phenol or a substituted phenol, such as cresol, with formaldehyde. These low cost resins have been produced commercially for more than 100 years and in the 1990s are produced by more than 40 companies in the United States. They are employed as adhesives in the plywood industry and in numerous under-the-hood appHcations in the automotive industry. Because of the cycHc nature of the automotive and home building industry, the consumption of phenol for the production of phenohc resins is subject to cycHc swings greater than that of the economy as a whole. [Pg.291]

In 1993, worldwide consumption of phenoHc resins exceeded 3 x 10 t slightly less than half of the total volume was produced in the United States (73). The largest-volume appHcation is in plywood adhesives, an area that accounts for ca 49% of U.S. consumption (Table 11). During the early 1980s, the volume of this apphcation more than doubled as mills converted from urea—formaldehyde (UF) to phenol—formaldehyde adhesives because of the release of formaldehyde from UF products. Other wood bonding applications account for another 15% of the volume. The next largest-volume application is insulation material at 12%. [Pg.302]

Wood Bonding. This appHcation requires large volumes of phenoHc resins (5—25% by weight) for plywood, particle board, waferboard, and fiberboard. Initially, phenoHc resins were used mainly for exterior appHcations, whereas urea—formaldehyde (UF) was used for interiors. However, the concern over formaldehyde emission has caused the replacement of UF by phenol-formaldehyde adhesives. [Pg.306]

Different phenoHc resins are used for different types of wood for example, plywood adhesives contain alkaline-catalyzed Hquid resole resins. Extension with a filler reduces cost, minimizes absorption, and increases bond strength. These resins have an alkaline content of 5—7% and are low in free phenol and formaldehyde. Because many resins have a high water content and limited storage stabiHty, they are frequently made at or near the mill producing the plywood product. The plywood veneers are dried, coated with resin, stacked for pressing, and cured at 140—150°C. [Pg.306]

Phenolic Resins. PhenoHc resins [9003-35 ] (qv) are thermosets prepared by the reaction of phenol with formaldehyde, through either the base-cataly2ed one-stage or the acid-cataly2ed two-stage process. The Hquid intermediate may be used as an adhesive and bonding resin for plywood, particle board, ftberboard, insulation, and cores for laminates. The physical properties for typical phenoHc laminates made with wood are Hsted in Table 1. [Pg.328]

Phenol, in its various purity grades, is used for phenol—formaldehyde resins to bond constmction materials like plywood and composition board (40% of the phenol produced), for the bisphenol A employed in making epoxy resins (qv) and polycarbonate (qv) (30%), and for caprolactam (qv), the starting material for nylon-6 (20%). Minor amounts ate used for alkylphenols (qv) and pharmaceuticals (10). [Pg.364]

At one time urea-formaldehyde was used extensively in the manufacture of plywood but the product is today less important than heretofore. For this purpose a resin (typically U-F molar ratio 1 1.8)-hardener mixture is coated on to wood veneers which are plied together and pressed at 95-110°C under pressure at 200-800 Ibf/in (1.38-5.52 MPa). U-F resin-bonded plywood is suitable for indoor application but is generally unsuitable for outdoor work where phenol-formaldehyde, resorcinol-fonnaldehyde or melamine modified resins are more suitable. [Pg.678]

Typical features of a plywood resole formulation are a formaldehyde-to-phenol molar ratio in the 2.0 1 to 2.5 1 range, programmed formaldehyde, an alkali content from 4 to 8 wt% (calculated as sodium hydroxide), and pan solids of 40-50%. Resins used for laminated veneer lumber (LVL) tend to be similar to plywood resins in composition and molecular weight, though they are often designed for high-end cure speed. [Pg.890]

Uses of Formaldehyde. Formaldehyde is the simplest and most reactive aldehyde. Condensation polymerization of formaldehyde with phenol, urea, or melamine produces phenol-formaldehyde, urea formaldehyde, and melamine formaldehyde resins, respectively. These are important glues used in producing particle hoard and plywood. [Pg.153]

Developments in glued laminated structures and panel products such as plywood and chipboard raises the question of the durability of adhesives as well as wood. Urea-formaldehyde adhesives are most commonly used for indoor components. For exterior use, resorcinol adhesives are used for assembly work, whilst phenolic, tannin and melamine/urea adhesives are used for manufactured wood products. Urea and casein adhesives can give good outdoor service if protected with well-maintained surface finishes. Assembly failures of adhesives caused by exudates from some timber species can be avoided by freshly sanding the surfaces before glue application. [Pg.960]

Historically, the outbreak of the first World War provided a stimulus for the industrial preparation of large amounts of synthetic phenol, which was needed as a raw material to manufacture the explosive picric acid (2,4,6-trinitrophenol). Today, more than 2 million tons of phenol is manufactured each year in the United States for use in such products as Bakelite resin and adhesives for binding plywood. [Pg.628]

Phenolic resins also find use in varnishes, electrical insulation, and in other protective coatings. Heat-settings adhesives which are based on phenolics find use in producing plywood. These also find use in the production of ionexchange resins having amine, sulphonic acid, hydroxy or phosphoric acid functional groups. [Pg.165]

The two major uses of phenol in 1995 were the production of bisphenol-A (35%) and the production of phenolic resins (34%) (CMR 1996). The largest use for bisphenol-A is as an intermediate in the production of epoxy resins (Thurman 1982). Phenol-formaldehyde resins comprise over 95% of this market (Thurman 1982). The plywood adhesive industry required 26% of the total production of phenolic resins in 1977. These low-cost, versatile, thermoset resins have other major uses in the construction, automotive, and appliance industries (Thurman 1982). [Pg.159]

Most of the benzene used in chemical applications ends up in the manufacturing processes for styrene (covered in Chapter 8), cumene (covered in Chapter 7), and cyclohexane (covered in Chapter 4), Polymers and all sorts of plastics are produced from styrene. Cumene is the precursor to phenol, which ultimately ends up in resins and adhesives, mostly for gluing plywood together. The production of styrene and phenol account for. about 70% of the benzene produced. Cyclohexane, used to make Nylon 6 and Nylon 66, is the next biggest application of benzene. [Pg.38]

Uses. The major applications of phenol are phenolic resins, Bisphenol A, and caprolactam. The reaction of phenol with formaldehyde gives liquid phenolic resins (used extensively as the adhesive in plywood) and solid resins (used as engineering plastics in electrical applications). In powder form, the phenolic resin can be molded easily and are completely nonconductive. These phenolic resins or plastics can be found in panel boards, switchgears, and telephone assemblies. The agitator in your washing machine is probably a phenolic resin. [Pg.115]

Uses. About 35-40% of the methanol made is converted to formaldehyde. That s not because the embalming business is so good. Formaldehyde is a feedstock for amino and phenolic resins, which are used as adhesives in plywood, and in the automotive and appliance industry to make parts (all the agitators in washing machines used to be made out of phenolic resins). It is used as feedstock for hexamethylene tetramine, used in electronic plastics for pentaerythritol, used for making enamel coatings and for floor polish and inks for butanediol, a chemical intermediate and for acetic acid, which is widely used itself as a feedstock and solvent and warrants its own treatrnent later on. In the textile business, formaldehyde is used to make fire retardants, mildew resistant linens, and permanent press clothing. [Pg.180]

Other applications for phenolics are switchgears, handles, and appliance parts, such as washing machine agitators (that s why they re usually black). Phenolics are widely used to bond plywood, particularly exterior and marine grades. Although urea-formaldehyde resins are cheaper for this purpose, they were not nearly as water-resistant and have been limited to interior grades. Abrasive wheels and brake linings also are bonded with phenolic adhesives. [Pg.361]

Articles made from amino resins are water clear, hard, and strong, but they can crack. They have good electrical properties, and they have better colorability than phenolic resins. Amino resins are used as adhesives for plywood and particleboard but only in interior grades. They have low weather resistance and deteriorate when exposed to sun, heat, cold, and moisture. [Pg.364]

Phenolic resins are based on phenol and some other comonomer like formaldehyde. Phenolics are widely used in areas of tough duty, and where they don t have to look pretty, such as switchgear, handles, and plywood glue. [Pg.373]

Figure 17 provides an overview of the function of the diazoquinone/novolac materials. The matrix resin is a copolymer of a phenol and formaldehyde. The generic term for this class of polymers is novolac (18) meaning "new lacquer" and describes the purpose for which they were first developed. The chemical industry produces millions of tons of novolac each year where its end use is that of a thermoset resin and adhesive. Novolac is commonly used, for example, as the principle adhesive in the manufacture of plywood. [Pg.112]


See other pages where Phenolic plywood is mentioned: [Pg.32]    [Pg.469]    [Pg.556]    [Pg.32]    [Pg.469]    [Pg.556]    [Pg.318]    [Pg.326]    [Pg.288]    [Pg.362]    [Pg.661]    [Pg.874]    [Pg.911]    [Pg.912]    [Pg.1073]    [Pg.146]    [Pg.962]    [Pg.375]    [Pg.88]    [Pg.168]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Plywood

© 2024 chempedia.info