Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenolic compounds solvent extractions

To summarize, the more hydrophobic phenolic compounds are extracted better than the less hydrophobic ones, and the extraction is maximal at pH < pfCg. In general, for all the compounds distribution ratios are relatively high and comparable to those achieved with conventional active solvents like 1-octanol. This may be attributed to the ability of IL s imidazolic proton at Cj to hydrogen bonding and specific solvation of the phenolic molecule. [Pg.248]

Palma, M. Pineiro, Z. Barroso, C. 2001. Stability of phenolic compounds during extraction with superheated solvents. J. Chromatogr. 921 169-174. [Pg.65]

An effective and reliable extraction method is important for studies of phenolics. Different solvent extractions may provide different types of compounds due to their variable chemical nature and sensitivity toward extraction or hydrolysis methods. For instance, phenolic compounds extracted from almond skins and hulls with diethyl ether [2], methanol [7], ethyl acetate, and -butanol [8] may result in different yields and compositions of the extracts. [Pg.128]

Solvent extraction removes harmful constituents such as heavy aromatic compounds from lubricating oils to improve the viscosity-temperature relationship. The usual solvents for extracting lubricating oil are phenol and furfural. [Pg.288]

Various extraction methods for phenolic compounds in plant material have been published (Ayres and Loike, 1990 Arts and Hollman, 1998 Andreasen et ah, 2000 Fernandez et al., 2000). In this case phenolic compounds were an important part of the plant material and all the published methods were optimised to remove those analytes from the matrix. Our interest was to find the solvents to modily the taste, but not to extract the phenolic compounds of interest. In each test the technical treatment of the sample was similar. Extraction was carried out at room temperature (approximately 23 °C) for 30 minutes in a horizontal shaker with 200 rpm. Samples were weighed into extraction vials and solvent was added. The vials were closed with caps to minimise the evaporation of the extraction solvent. After 30 minutes the samples were filtered to separate the solvent from the solid. Filter papers were placed on aluminium foil and, after the solvent evaporahon, were removed. Extracted samples were dried at 100°C for 30 minutes to evaporate all the solvent traces. The solvents tested were chloroform, ethanol, diethylether, butanol, ethylacetate, heptane, n-hexane and cyclohexane and they were tested with different solvent/solid ratios. Methanol (MeOH) and acetonitrile (ACN) were not considered because of the high solubility of catechins and lignans to MeOH and ACN. The extracted phloem samples were tasted in the same way as the heated ones. Detailed results from each extraction experiment are presented in Table 14.2. [Pg.283]

Chlorofonn is too non-polar to dissolve the phenolic compounds under study, but it dissolves many of the monoterpenes, at least to some extent. Because the solubility of some monoterpenes into chloroform was low, different solvent/ solid ratios were tested. These were 50,20,10 and 5 1/kg of dry phloem. The extracts were bright yellow and the strongest colour was with the smallest solvent/solid ratio (51/kg). The colour of the solvent indicated that the solubility of the extractable compounds was not restricting the reaction even with the smallest solvent volume. The taste of the dry samples was evaluated by comparing them to the original phloem sample. The results showed that the mildest taste was in the phloem extracted with a solvent/solid ratio of 50 1/kg and 20 1/kg also had some effect on the taste. The taste of the chloroform-extracted phloem was stabile and it was the same after a week. [Pg.284]

EtOH extraction was the most efficient way to improve the flavour of the phloem. A solvent/solid ratio of at least 10 1/kg was needed to achieve a significant change in the taste. The loss of catechins was approximately 27% and that of lignans was 35%. All the catechins and lignans were found from the EtOH extract. Losses of lignans and catechins were smaller with other sovents, but either the taste was not modified or the cost of solvent treatment would be too high. Phenolic compounds like lignans and catechins also have a bitter taste and some improvement in flavour may have occurred because of the lower concentration of these. The disappearance of the characteristic... [Pg.285]

Plasticiser/oil in rubber is usually determined by solvent extraction (ISO 1407) and FTIR identification [57] TGA can usually provide good quantifications of plasticiser contents. Antidegradants in rubber compounds may be determined by HS-GC-MS for volatile species (e.g. BHT, IPPD), but usually solvent extraction is required, followed by GC-MS, HPLC, UV or DP-MS analysis. Since cross-linked rubbers are insoluble, more complex extraction procedures must be carried out. The determination of antioxidants in rubbers by means of HPLC and TLC has been reviewed [58], The TLC technique for antidegradants in rubbers is described in ASTM D 3156 and ISO 4645.2 (1984). Direct probe EIMS was also used to analyse antioxidants (hindered phenols and aromatic amines) in rubber extracts [59]. ISO 11089 (1997) deals with the determination of /V-phenyl-/9-naphthylamine and poly-2,2,4-trimethyl-1,2-dihydroquinoline (TMDQ) as well as other generic types of antiozonants such as IV-alkyl-AL-phenyl-p-phenylenediamines (e.g. IPPD and 6PPD) and A-aryl-AL-aryl-p-phenylenediamines (e.g. DPPD), by means of HPLC. [Pg.35]

Potentiometric titration procedures with sodium methoxide have been reported for non-sulfur-containing organotin compounds in solvent extracts of polymers, and for phenolic antioxidants with sodium isopropox-ide in pyridine medium [21]. Organotin compounds in solvent extracts of PVC can be determined by potentiometric and manual titration procedures [487,488]. [Pg.669]

Vatai T, Skerget M and Eljko Knez Z. 2009. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J Food Eng 90(2) 246-254. [Pg.269]

Among the most important indirect methods of analysis which employ redox reactions are the bromination procedures for the determination of aromatic amines, phenols, and other compounds which undergo stoichiometric bromine substitution or addition. Bromine may be liberated quantitatively by the acidification of a bromate-bromide solution mixed with the sample. The excess, unreacted bromine can then be determined by reaction with iodide ions to liberate iodine, followed by titration of the iodine with sodium thiosulphate. An interesting extension of the bromination method employs 8-hydroxyquinoline (oxine) to effect a separation of a metal by solvent extraction or precipitation. The metal-oxine complex can then be determined by bromine substitution. [Pg.205]

The previous chapters have demonstrated that liquid-liquid extraction is a mass transfer unit operation involving two liquid phases, the raffinate and the extract phase, which have very small mutual solubihty. Let us assume that the raffinate phase is wastewater from a coke plant polluted with phenol. To separate the phenol from the water, there must be close contact with the extract phase, toluene in this case. Water and toluene are not mutually soluble, but toluene is a better solvent for phenol and can extract it from water. Thus, toluene and phenol together are the extract phase. If the solvent reacts with the extracted substance during the extraction, the whole process is called reactive extraction. The reaction is usually used to alter the properties of inorganic cations and anions so they can be extracted from an aqueous solution into the nonpolar organic phase. The mechanisms for these reactions involve ion pah-formation, solvation of an ionic compound, or formation of covalent metal-extractant complexes (see Chapters 3 and 4). Often formation of these new species is a slow process and, in many cases, it is not possible to use columns for this type of extraction mixer-settlers are used instead (Chapter 8). [Pg.370]

The technique of CPC was also employed as a key step in the purification of 26 phenolic compounds from the needles of Norway spruce (Picea abies, Pinaceae). An aqueous extract of needles (5.45 g) was separated with the solvent system CHCl3-Me0H-i-Pr0H-H20 (5 6 1 4), initially with the lower phase as mobile phase and then subsequently switching to the upper phase as mobile phase. Final purification of the constituent flavonol glycosides, stilbenes, and catechins was by gel filtration and semipreparative HPLC. °... [Pg.7]

Several studies are devoted to the extraction of phenolic compounds. These compounds are particularly interesting from a practical viewpoint, as phenol derivatives are toxic pollutants that have marked detrimental effects on living organisms in general therefore, the development of effective methods of phenols recovery is a long-standing problem of analytical chemistry. To determine phenolic compounds at the trace level, typically preconcentration and separation from accompanying substances is required, but the extraction of phenolic compounds with conventional solvents is often not quantitative. From a more theoretical viewpoint, phenolic compounds exhibit a wide structural variability, thus, a study of their... [Pg.246]

Analysis of data from the factorials indicates that pH has a consistently significant effect on compound recoveries. A summary of the effect of pH level on compounds used in the study is given in Table VI. There is also an interaction between pH and primary column sorbent type for some compounds. This interaction suggests that at low sample pH, a C18 column will produce the best extraction efficiencies for phenolic compounds. The effect of adding methanol to the sample before extraction clearly produced odd results when the recovery data from the 24 factorial was analyzed by using half-normal plots. This effect will be studied in future work. Additionally, different elution solvents will be examined as well as new sorbent phases as they become available. [Pg.371]

Some flawless analytical methods do exist but more are needed. Quantitative extraction of all the phenolic compounds from skins and seeds is not possible however we have developed a standard, reproducible procedure. Using a solvent with physicochemical properties similar to wine, one performs three cold extractions followed by two warm ones. This gives an estimate of the total phenols and an idea of their solubilities—an important technological factor. Our work, done in 1969-1972 involved the two principal red varieties of Bordeaux (Merlot and Cabemet-Sauvignon) from two vineyards. One ( ) is a Grand Cru of the Medoc region characterized by fast maturation, and the other (SC) matures more slowly (46, 47). [Pg.83]

For an accurate quantification of phenolic compounds extracted from plant material, the starting plant material should be washed, dried, and weighed prior to extraction, and the amount of the final extract should be recorded. The extracted polyphenolics are generally diluted and then concentrated by evaporation of solvents. Evaporation should be performed at 30° to 40°C under reduced pressure. When extract-... [Pg.1248]

An accurate sample weight before extraction and the amount of final extract after sample cleanup should be known for an accurate quantification of phenolic compounds extracted from plant materials by HPLC analysis. The characteristic wavelengths for detection of polyphenolics can be selected at the discretion of the experimenter. The solvent gradients described in the Basic and Alternate Protocols can be modified for better resolution. [Pg.1264]

Commonly used extraction solvents are ethyl acetate, diethyl ether, methanol, and aqueous methanol, but the majority of the free phenolic compounds can be extracted with alcohols (methanol or ethanol) or alcohol-water mixtures (1). Due to the differences in polarity between components (40), neither diethyl ether nor ethyl acetate are able to extract completely all the phenolic compounds in a liquid-liquid extraction. Thus, successive extraction with diethyl ether and then ethyl acetate has been used for phenolics in fruit juices (41). When using alcohol-water mixtures (40), repeated extraction or reflux for 1 h are necessary to extract free phenolic acids as well as their glycosides. [Pg.787]

Many different sample preparation procedures have been employed, ranging from simple filtration of juice products to solvent extraction, and extraction by SPE using C, 8, Sephadex LH-20 (49,50,52), and Amberlite XAD-2 (51,54,57). The Amberlite XAD-2 cleaning step has been used for many phenolic extracts, especially for fruit purees, to remove the sugars and other polar compounds. However, due to the low recovery rate with Amberlite XAD-2 for certain phenol glycosides, a modified sample preparation technique is needed, especially for quantification of ar-butin in pear juice and blends (54). Figure 6 describes the fractionation procedure for phenolics using a Sephadex LH-20 column (58). [Pg.789]


See other pages where Phenolic compounds solvent extractions is mentioned: [Pg.259]    [Pg.263]    [Pg.1171]    [Pg.1765]    [Pg.1099]    [Pg.285]    [Pg.313]    [Pg.421]    [Pg.333]    [Pg.177]    [Pg.57]    [Pg.58]    [Pg.58]    [Pg.59]    [Pg.179]    [Pg.269]    [Pg.58]    [Pg.345]    [Pg.213]    [Pg.456]    [Pg.282]    [Pg.253]    [Pg.1077]    [Pg.494]    [Pg.97]    [Pg.775]    [Pg.787]   


SEARCH



Extraction compounds

Phenol compounds

Phenol phenolic compounds

Phenolic compounds

Phenolic extractions

Phenolic extractives

Solvent compounding

© 2024 chempedia.info