Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenanthrene method

Diphenic acid. Phenanthrene upon oxidation in acetic acid solution at 85° with 30 per cent, hydrogen peroxide gives diphenic acid (diphenyl-2 2 -di-carboxyHc acid) no phenanthraquinone is formed under these experimental conditions. The reaction is essentially an oxidation of phenanthrene with peracetic acid. (For another method of preparation, see Section I V,74.)... [Pg.755]

In Europe, where an abundant supply of anthracene has usually been available, the preferred method for the manufacture of anthraquinone has been, and stiU is, the catalytic oxidation of anthracene. The main problem has been that of obtaining anthracene, C H q, practically free of such contaminants as carbazole and phenanthrene. Many processes have been developed for the purification of anthracene. Generally these foUow the scheme of taking the cmde anthracene oil, redistilling, and recrystaUizing it from a variety of solvents, such as pyridine (22). The purest anthracene may be obtained by azeotropic distillation with ethylene glycol (23). [Pg.421]

The synthetic procedure described is based on that reported earlier for the synthesis on a smaller scale of anthracene, benz[a]anthracene, chrysene, dibenz[a,c]anthracene, and phenanthrene in excellent yields from the corresponding quinones. Although reduction of quinones with HI and phosphorus was described in the older literature, relatively drastic conditions were employed and mixtures of polyhydrogenated derivatives were the principal products. The relatively milder experimental procedure employed herein appears generally applicable to the reduction of both ortho- and para-quinones directly to the fully aromatic polycyclic arenes. The method is apparently inapplicable to quinones having an olefinic bond, such as o-naphthoquinone, since an analogous reaction of the latter provides a product of undetermined structure (unpublished result). As shown previously, phenols and hydro-quinones, implicated as intermediates in the reduction of quinones by HI, can also be smoothly deoxygenated to fully aromatic polycyclic arenes under conditions similar to those described herein. [Pg.167]

Robin57 59 studied this system up to 1000 atm. He measured the concentration of phenanthrene from its light absorption—a method that can only be used where a careful study has been made of the direct effect of pressure on the spectrum. He studied the direct effect in separate experiments with unsaturated solutions. [Pg.99]

Shiaris MP, JJ Cooney (1983) Replica plating method for estimating phenanthrene-utilizing and phenan-threne-cometabolizing microorganisms. Appl Environ Microbiol 45 706-710. [Pg.275]

Sander and wise have proposed a test method to determine the bonding chemistry used to prepare octadecylsiloxane column packings based on the relative retention of three polycyclic aromatic hydrocarbons, benzo[a]pyrene (BaP), phenanthro-phenanthrene (PhPh), and l,2 3,4 5,6 7,8-tetrabenzonaphthalene (TBN) eluted with the mobile phase acetonitrile-water (85 15) [52,67,199,210]. On monomeric phases the test solutes elute in the... [Pg.188]

The Pschorr reaction is a method of synthesis of phenanthrenes from diazotized Z-2-aminostilbenes. A traditional procedure involves heating with a copper catalyst. Improved yields are often observed, however, if the diazonium ion is treated with iodide ion. Suggest a mechanism for the iodide-catalyzed reaction. [Pg.1061]

A system based upon the reactivity of coals during extraction with anthracene oil and phenanthrene has been developed. A convenient graphical method of expressing the data on Seyler s chart has been adopted. This method has limitations when dealing with prime coking coals, which show wide variations in extraction yield. The differences in extraction yield relate to the concentration of inertinite which is virtually insoluble in anthracene oil. [Pg.131]

PET reactions [2] can be considered as versatile methods for generating radical cations from electron-rich olefins and aromatic compounds [3], which then can undergo an intramolecular cationic cyclization. Niwa and coworkers [4] reported on a photochemical reaction of l,l-diphenyl-l, -alkadienes in the presence of phenanthrene (Phen) and 1,4-dicyanobenzene (DCNB) as sensitizer and electron acceptor to construct 5/6/6- and 6/6/6-fused ring systems with high stereoselectivity. [Pg.337]

Methods for the synthesis of the biologically active dihydrodiol and diol epoxide metabolites of both carcinogenic and noncarcinogenic polycyclic aromatic hydrocarbons are reviewed. Four general synthetic routes to the trans-dihydrodiol precursors of the bay region anti and syn diol epoxide derivatives have been developed. Syntheses of the oxidized metabolites of the following hydrocarbons via these methods are described benzo(a)pyrene, benz(a)anthracene, benzo-(e)pyrene, dibenz(a,h)anthracene, triphenylene, phen-anthrene, anthracene, chrysene, benzo(c)phenanthrene, dibenzo(a,i)pyrene, dibenzo(a,h)pyrene, 7-methyl-benz(a)anthracene, 7,12-dimethylbenz(a)anthracene, 3-methylcholanthrene, 5-methylchrysene, fluoranthene, benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)-fluoranthene, and dibenzo(a,e)fluoranthene. [Pg.41]

Although phenanthrene is noncarcinogenic, some of its methylated derivatives exhibit significant activity as mutagens (52,53). The 1,2- and 3,4-dihydrodiols of phenanthrene were first synthesized by Jerina et al. (54) by a method involving reduction of the corresponding quinones with LiAlH. However, the yields in the rein Polycyclic Hydrocarbons and Carcinogenesis Harvey, R. ... [Pg.49]

The phenanthrene 1,2- and 3,4-diones are synthetically accessible from the related 8 phenols. Oxidation of 2-phenanthrol with either Fremy s salt ((KS0 )2N0) or phenylseleninic anhydride gave phenanthrene 1,2-dione directly (55). Unexpectedly, oxidation of 3-phenanthrol with (KSOg NO yielded 2,2-dihydroxybenz(e)indan-l,3-d-ione (Figure 10). However, phenanthrene 3,4-dione was readily obtained from 3-phenanthrol by Fieser s method entailing diazonium coupling, reduction, and oxidation of the resulting 4-amino-3-phen-anthrol with chromic acid (56). [Pg.51]

Boeda et al. (1996) identified bitumen on a flint scraper and a Levallois flake, discovered in Mousterian levels (about 40 000 BP) at the site of Umm el Tlel in Syria. The occurrence of polyaromatic hydrocarbons such as fluoranthene, pyrene, phenanthrenes and chrysenes suggested that the raw bitumen had been subjected to high temperature. The distribution of the sterane and terpane biomarkers in the bitumen did not correspond to the well-known bitumen occurrences in these areas. In other studies of bitumen associated with a wide variety of artefacts of later date, especially from the 6th Millennium BC onwards, molecular and isotopic methods have proved successful in recognizing different sources of bitumen enabling trade routes to be determined through time (Connan et al., 1992 Connan and Deschesne, 1996 Connan, 1999 Harrell and Lewan, 2002). [Pg.248]

Another area to which the MM method can be advantageously applied is the prediction of product distribution under thermodynamic control, where the errors in energy calculations tend to cancel if structurally related products are compared (120). A remarkable example is the dodecahydrogenation of phenanthrene, in which 25 structural isomer products are possible, each having one to four stable... [Pg.168]

The authors carried out the calculation for a considerable number of aromatic hydrocarbons by this method, in part also including configuration interaction (01). As in the case of anthracene, the possibility of isomeric carbonium ions was taken into account for biphenyl, naphthalene, phenanthrene, pyrene, and perylene. Comparison with the measured spectra permitted a distinction between the isomeric carbonium ions in some cases. The possibility of this differentiation only... [Pg.228]

This method was used to determine the K values of naphthalene, phenanthrene, p-xylene and toluene, and the values converted to by the use of equation (22a) (Mackor et al., 1958a, b). [Pg.244]

Some PAHs (e.g., phenanthrene, pyrene, and benzo[g,/z,i]perylene) are commonly seen in products boiling in the middle to heavy distillate range. In a method for their detection and analysis (EPA 8310), an octadecyl column and an aqueous acetonitrile mobile phase are used. Analytes are excited at 280 nm and detected at emission wavelengths of >389 nm. Naphthalene, acenaphthene, and fluorene must be detected by a less sensitive UV detector because they emit light at wavelengths below 389 nm. Acenaphthylene is also detected by UV detector. [Pg.204]


See other pages where Phenanthrene method is mentioned: [Pg.49]    [Pg.49]    [Pg.81]    [Pg.171]    [Pg.401]    [Pg.5]    [Pg.228]    [Pg.234]    [Pg.269]    [Pg.322]    [Pg.196]    [Pg.76]    [Pg.9]    [Pg.700]    [Pg.170]    [Pg.211]    [Pg.461]    [Pg.463]    [Pg.98]    [Pg.128]    [Pg.48]    [Pg.51]    [Pg.52]    [Pg.198]    [Pg.269]    [Pg.191]    [Pg.154]    [Pg.237]    [Pg.204]    [Pg.112]    [Pg.184]    [Pg.948]   
See also in sourсe #XX -- [ Pg.531 ]




SEARCH



Phenanthren

Phenanthrene

Phenanthrenes

© 2024 chempedia.info