Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomerization carbonium ion

These energy values are calculated from thermochemical tables (11) and the ionization potentials of hydrocarbons obtained by Stevenson (15) using mass spectrometric methods. The union of an olefin and a proton from an acid catalyst leads to the formation of a positively charged radical, called a carbonium ion. The two shown above are sec-propyl and fer -butyl, respectively. [For addition to the other side of the double bond, A 298 = —151.5 and —146 kg.-cal. per mole, respectively. For comparison, reference is made to the older (4) values of Evans and Polanyi, which show differences of —7 and —21 kg.-cal. per mole between the resultant n- and s-propyl and iso-and tert-butyl ions, respectively, against —29.5 and —49 kg.-cal. per mole here. These energy differences control the carbonium ion isomerization reactions discussed below.]... [Pg.9]

Ease of protonation of the quinuclidine nitrogen makes competitive reactions such as carbonium ion isomerization and substitution and elimination processes unimportant. [Pg.481]

Assuming that carbonium ion isomerization is a slow stage (stage 2) while the other intermediate stages are fast and are in equilibrium, one may derive the following kinetic equation ... [Pg.447]

Dual Function Catalytic Processes. Dual-function catalytic processes use an acidic oxide support, such as alumina, loaded with a metal such as Pt to isomerize the xylenes as weH as convert EB to xylenes. These catalysts promote carbonium ion-type reactions as weH as hydrogenation—dehydrogenation. In the mechanism for the conversion of EB to xylenes shown, EB is converted to xylenes... [Pg.421]

Isomerization. Maleic acid is isomerized to fumaric acid by thermal treatment and a variety of catalytic species. Isomerization occurs above the 130 to 140°C melting point range for maleic acid but below 230°C, at which point fumaric acid is dehydrated to maleic anhydride. Derivatives of maleic acid can also be isomerized. Kinetic data are available for both the uncatalyzed (73) and thiourea catalyzed (74) isomerizations of the cis to trans diacids. These data suggest that neither carbonium ion nor succinate intermediates are involved in the isomerization. Rather, conjugate addition imparts sufficient single bond character to afford rotation about the central C—C bond of the diacid (75). [Pg.452]

Carbonylation, or the Koch reaction, can be represented by the same equation as for hydrocarboxylation. The catalyst is H2SO4. A mixture of C-19 dicarboxyhc acids results due to extensive isomerization of the double bond. Methyl-branched isomers are formed by rearrangement of the intermediate carbonium ions. Reaction of oleic acid with carbon monoxide at 4.6 MPa (45 atm) using 97% sulfuric acid gives an 83% yield of the C-19 dicarboxyhc acid (82). Further optimization of the reaction has been reported along with physical data of the various C-19 dibasic acids produced. The mixture of C-19 acids was found to contain approximately 25% secondary carboxyl and 75% tertiary carboxyl groups. As expected, the tertiary carboxyl was found to be very difficult to esterify (80,83). [Pg.63]

Clay-catalyzed dimerization of unsaturated fatty acids appears to be a carbonium ion reaction, based on the observed double bond isomerization, acid catalysis, chain branching, and hydrogen transfer (8,9,11). [Pg.114]

In contrast to the behavior of homoallylic alcohol (70a) when treated with methanesulfonyl chloride is pyridine, heating A -19-methanesulfonate (68b) in pyridine gives the 5)5,19-cyclo-6-ene (72). Vinylcyclopropane (72) is inert to the conditions used for converting vinylcyclopropane (73) to the A ° -B-homo-7)5-ol (70a). The latter results are only consistent with the existence of two discrete isomeric carbonium ion intermediates which give rise to isomeric elimination products. °... [Pg.381]

The preparation of the less stable isomer (53b) of the oxazolone 53a involves a rather tedious procedure. It has been reported that 53a is rapidly isomerized to 53b in 48% hydrobromic acid saturated with gaseous HBr. In this way four azlactones have been converted into their isomers.It has been established, moreover, that the isomerization is radical-initiated and does not involve a carbonium ion intermediate. The isomerization can be reversed by pyridine. ... [Pg.96]

The catalysts generally used in catalytic reforming are dual functional to provide two types of catalytic sites, hydrogenation-dehydrogenation sites and acid sites. The former sites are provided by platinum, which is the best known hydrogenation-dehydrogenation catalyst and the latter (acid sites) promote carbonium ion formation and are provided by an alumina carrier. The two types of sites are necessary for aromatization and isomerization reactions. [Pg.62]

The few exceptions to this general rule arise when the a-carbon carries a substituent that can stabilize carbonium-ion development well, such as oxygen or sulphur. For example, 1-trimethylsilyl trimethylsilyl enol ethers give products (72) derived from electrophilic attack at the /J-carbon, and the vinylsilane (1) reacts with a/3-unsaturated acid chlorides in a Nazarov cyclization (13) to give cyclopentenones such as (2) the isomeric vinylsilane (3), in which the directing effects are additive, gives the cyclopentenone (4) ... [Pg.102]

The addition of a spillover proton to an adsorbed alkene to yield a secondary carbonium ion followed by abstraction of a proton from the C3 carbon would yield both isomers of 2-butene. The estimated faradaic efficiencies show that each electromigrated proton causes up to 28 molecules of butene to undergo isomerization. This catalytic step is for intermediate potentials much faster than the consumption of the proton by the electrochemical reduction of butene to butane. However, the reduction of butene to butane becomes significant at lower potentials, i.e., less than 0.1V, with a concomitant inhibition of the isomerization process, as manifest in Fig. 9.31 by the appearance of the maxima of the cis- and tram-butene formation rates. [Pg.467]

We have seen that carbonium ions can undergo a variety of photoreactions, affording products which often vary considerably from those obtained in the photolysis of the corresponding uncharged compounds. The predominant mode of reaction encountered would seem to be isomerization to one or more valence bond isomers, which occurs via a symmetry-allowed disrotatory electrocyclic closure, rather than a [<72a-f 7r2a] cycloaddition in the case of alkylbenzenium ions and pro-... [Pg.150]

For (XX), L py, it is likely that the major reaction path involves initial skeletal isomerization to give (XXI) followed by rapid solvolysis of this isomer. The solvolysis of this isomer is strongly metal-assisted since the intermediate carbonium ion is stabilised by the metal-alkene resonance form as shown in the Scheme. The product is the 1-D2 isomer. Now, the skeletal isomerization of (XX) is expected to be retarded by free pyridine and cannot occur when L2 = 2,2 -bipyridyl C7). Hence under these conditions the reaction must occur by solvolysis of (XX) giving largely the 3-D2 isomer. However, the product formed under these conditions is still about 30% of the 1-D2 isomer (Table I). [Pg.347]

Olefins dissolved in aqueous acid are in rapid reversible equilibrium with a carbonium ion formed by addition of a proton.288 This rapidly and reversibly formed carbonium ion has to be a non-classical one in view of the behavior of the isomeric pentenes XLVI and XLVII.28 Both pentenes react with dilute nitric acid to give the same tertiary carbinol. If the reaction is interrupted when half of the olefin has been converted to carbinol, the remaining olefin has its original structure in both cases. The first product of protonation of the olefin is therefore of such a structure that loss of a proton gives only the original olefin. The reversibly formed carbonium ion can not therefore be the classical one. [Pg.137]

Partitioning of carbocations between addition of nucleophiles and deprotonation, 35, 67 Perchloro-organic chemistry structure, spectroscopy and reaction pathways, 25, 267 Permutations isomerization of pentavalent phosphorus compounds, 9, 25 Phase-transfer catalysis by quaternary ammonium salts, 15, 267 Phenylnitrenes, Kinetics and spectroscopy of substituted, 36, 255 Phosphate esters, mechanism and catalysis of nucleophilic substitution in, 25, 99 Phosphorus compounds, pentavalent, turnstile rearrangement and pseudoration in permutational isomerization, 9, 25 Photochemistry, of aryl halides and related compounds, 20, 191 Photochemistry, of carbonium ions, 9, 129... [Pg.359]


See other pages where Isomerization carbonium ion is mentioned: [Pg.188]    [Pg.228]    [Pg.527]    [Pg.33]    [Pg.33]    [Pg.448]    [Pg.93]    [Pg.369]    [Pg.675]    [Pg.188]    [Pg.228]    [Pg.527]    [Pg.33]    [Pg.33]    [Pg.448]    [Pg.93]    [Pg.369]    [Pg.675]    [Pg.152]    [Pg.54]    [Pg.367]    [Pg.59]    [Pg.194]    [Pg.134]    [Pg.79]    [Pg.88]    [Pg.26]    [Pg.718]    [Pg.744]    [Pg.130]    [Pg.222]    [Pg.718]    [Pg.744]    [Pg.105]    [Pg.351]    [Pg.89]    [Pg.128]    [Pg.208]   
See also in sourсe #XX -- [ Pg.33 , Pg.37 , Pg.39 ]




SEARCH



Carbonium

Carbonium ion

Carbonium ion isomeric

© 2024 chempedia.info