Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase separation incompatibility

Phase-separation between incompatible polymer segments. [Pg.494]

In general, fully compatible resin are desirable. However, there are many applications where borderline compatibility is tolerated, and even in some cases, borderline compatibility or controlled incompatibility may enhance tack in adhesive systems. On the other hand, a resin with a borderline compatibility in combination with an oil or plasticizer in an adhesive formulation, will result in phase separation and therefore the migration of the oil or plasticizer to the adhesive surface is favoured. [Pg.618]

The flow behavior of the polymer blends is quite complex, influenced by the equilibrium thermodynamic, dynamics of phase separation, morphology, and flow geometry [2]. The flow properties of a two phase blend of incompatible polymers are determined by the properties of the component, that is the continuous phase while adding a low-viscosity component to a high-viscosity component melt. As long as the latter forms a continuous phase, the viscosity of the blend remains high. As soon as the phase inversion [2] occurs, the viscosity of the blend falls sharply, even with a relatively low content of low-viscosity component. Therefore, the S-shaped concentration dependence of the viscosity of blend of incompatible polymers is an indication of phase inversion. The temperature dependence of the viscosity of blends is determined by the viscous flow of the dispersion medium, which is affected by the presence of a second component. [Pg.611]

The main hurdle for the use of starch as a reinforcing phase is its hydrophillicity leading to incompatibility with polymer matrix and poor dispersion causing phase separation. Two strategies have been adopted to improve the performance of polysaccharides. [Pg.123]

Phase separation between block components occurs since the dissimilar block components, such as homopolymers, are typically incompatible with one another as a result of positive heat of mixing. There is a fundamental difference between phase separation in a system of incompatible homopolymers... [Pg.131]

Polymer blends have been categorized as (1) compatible, exhibiting only a single Tg, (2) mechanically compatible, exhibiting the Tg values of each component but with superior mechanical properties, and (3) incompatible, exhibiting the unenhanced properties of phase-separated materials (8). Based on the mechanical properties, it has been suggested that PCL-cellulose acetate butyrate blends are compatible (8). Dynamic mechanical measurements of the Tg of PCL-polylactic acid blends indicate that the compatability may depend on the ratios employed (65). Both of these blends have been used to control the permeability of delivery systems (vide infra). [Pg.85]

The use of extraction cartridges in the separation of azines, discussed in the last Section, is an example of on-column concentration using off-line column switching. A chromatogram can be cut off-line by collecting the zones of interest at the detector outlet followed by reinjection of the collected fraction onto a secondary column. The mobile phases used with the two columns should be compatible, eg they should be miscible and the mobile phase used with the first column should not have too high an eluting power in the second column. If the mobile phases are incompatible it may be possible to evaporate the primary mobile phase and redissolve the sample in a suitable solvent. [Pg.207]

In the coacervation process, the core substance is first added to a homogeneous solution of the selected solvent and polymer. Mechanical agitation is used to disperse the immiscible core to create tiny droplets suspended in solution (i.e., an emulsion). The coacervation or phase separation phenomenon is then induced by several means, such as changing the temperature and/or acidity of the polymer solution or adding salts, nonsolvents, or incompatible (immiscible) polymers to... [Pg.212]

There has been considerable interest recently in an alternative type of ABA triblock structure, where the end blocks could form crystalline domains, by crystallization, rather than amorphous domains by phase separation. It was felt that, since such a crystallization process need not depend on the incompatibility between the blocks, it should be possible to have a homogeneous melt, which should exhibit a much lower viscosity, and hence much easier processing, than the heterogeneous media of the conventional triblock copolymers. Furthermore, thermoplastic... [Pg.101]

It is possible to produce a block copolymer by the anionic polymerisation of styrene and butadiene as depicted below. The polystyrene and polybutadiene are mutually incompatible and hence phase separate to give the morphology also depicted below ... [Pg.114]

An A-B diblock copolymer is a polymer consisting of a sequence of A-type monomers chemically joined to a sequence of B-type monomers. Even a small amount of incompatibility (difference in interactions) between monomers A and monomers B can induce phase transitions. However, A-homopolymer and B-homopolymer are chemically joined in a diblock therefore a system of diblocks cannot undergo a macroscopic phase separation. Instead a number of order-disorder phase transitions take place in the system between the isotropic phase and spatially ordered phases in which A-rich and B-rich domains, of the size of a diblock copolymer, are periodically arranged in lamellar, hexagonal, body-centered cubic (bcc), and the double gyroid structures. The covalent bond joining the blocks rests at the interface between A-rich and B-rich domains. [Pg.147]

PVA Particles. Dispersions were prepared in order to examine stabilization for a core polymer having a glass transition temperature below the dispersion polymerization temperature. PVA particles prepared with a block copolymer having M PS) x 10000 showed a tendency to flocculate at ambient temperature during redispersion cycles to remove excess block copolymer, particularly if the dispersion polymerization had not proceeded to 100 conversion of monomer. It is well documented that on mixing solutions of polystyrene and poly(vinyl acetate) homopolymers phase separation tends to occur (10,11), and solubility studies (12) of PS in n-heptane suggest that PS blocks with Mn(PS) 10000 will be close to dissolution when dispersion polymerizations are performed at 3 +3 K. Consequently, we may postulate that for soft polymer particles the block copolymer is rejected from the particle because of an incompatibility effect and is adsorbed at the particle surface. If the block copolymer desorbs from the particle surface, then particle agglomeration will occur unless rapid adsorption of other copolymer molecules occurs from a reservoir of excess block copolymer. [Pg.277]

The examples discussed above illustrate the importance of block copolymer chain segment incompatibilities for the phase separation of bulk materials, combined with the ability to perform chemistry within specific nanoscale domains to impose permanence upon those self-assembled nanostructured morphologies. Each is limited, however, to crosslinking of internal domains within the solid-state assemblies in order to create discrete nanoscale objects. To advance the level of control over regioselective crosslinking and offer methodologies that allow for the production of additional unique nanostructured materials, the pre-assembled structures can be produced in solution (Figure 6.4), as isolated islands with reactivity allowed either internally or on the external... [Pg.154]

In Nafion, the hydrophobic perfluorinated segments of the polymer are incompatible with the hydrophilic sulfonic acid groups and thus phase separation occurs. When exposed to water, the hydrophilic domains swell to provide channels for proton transport, whereas the hydrophobic domains provide mechanical integrity and, at least in the case of lower lEC samples. [Pg.114]

Finally, we should mention the phenomenon of incompatibility of mixtures of polymer solutions. It applies to nearly all combinations of polymer solutions when the homogeneous solutions of two different polymers in the same solvent are mixed, phase separation occurs. For example, 10% solutions of polystyrene and poly(vinyl acetate), each in benzene, form two separated phases upon mixing. One phase contains mainly the first polymer, the other phase mainly the second polymer, but in both phases there is a certain amount of the other polymer present. This limited compatibility of polymer mixtures can be explained thermodynamically and depends on various factors, such as the structure of the macromolecule, the molecular weight, the mixing ratio, the overall polymer concentration, and the temperature. [Pg.17]


See other pages where Phase separation incompatibility is mentioned: [Pg.469]    [Pg.128]    [Pg.20]    [Pg.285]    [Pg.469]    [Pg.128]    [Pg.20]    [Pg.285]    [Pg.319]    [Pg.149]    [Pg.324]    [Pg.468]    [Pg.761]    [Pg.53]    [Pg.53]    [Pg.215]    [Pg.220]    [Pg.27]    [Pg.119]    [Pg.126]    [Pg.132]    [Pg.132]    [Pg.170]    [Pg.178]    [Pg.220]    [Pg.154]    [Pg.196]    [Pg.497]    [Pg.514]    [Pg.295]    [Pg.178]    [Pg.55]    [Pg.157]    [Pg.10]    [Pg.7]    [Pg.276]    [Pg.167]    [Pg.24]    [Pg.6]   


SEARCH



Incompatability

Incompatibility

Incompatibility Incompatible

Incompatible

Incompatibles

© 2024 chempedia.info