Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase principle

The inventory tasks is to collect environmentally important information about relevant processes involved in the product system. Inventory collects information about unit processes at first and subsequently, an inventory of inputs and outputs of the system and its surroundings is carried out. The goal is the identification and quantification of all elementary flows associated with product system. Inventory analysis is the nature of the technical implementation of LCA studies. It is an essential part of a study, has high demands for data availability, practical experience in modelling product systems and, in the case of using database tools, it is necessary to master them perfectly and to understand their function [46]. The inventory phase principle is data collection that is used to quantify values of the elementary flows. This phase represents a major practical part of the LCA study, time consuming and with demands for data availability and author s experience with modelling product system studies [47],... [Pg.268]

It is often useful to keep some of the reactants or the products in separate phases (principle of chemical protection by phase separation [53]). For instance, when the reaction is inhibited by its own substrate having the latter in an other phase than the one in which the catalyst is dissolved helps to eliminate long induction periods or complete stop of the reaction. An example is the biphasic hydrogenation of aldehydes with the water-soluble... [Pg.16]

Liquid chromatography cleanup on a LiChrosorb Diol column has been further proposed for the offline purification of chloramphenicol residues from bovine muscle and eggs (32). An online approach based on reversed-phase principles has also been described for isolation of chloramphenicol residues from swine kidney by an automated column switching system (63). Use of a protein exclusion column (Hisep) has been also suggested in an online trace-enrichment method for the determination of chloramphenicol in animal tissues (52). By employing a column-switching system, all chloramphenicol that eluted from the protein exclusion column was trapped at the entry of a 5 m Supelcosil LC-18 preconcentration column, to be subsequently back-flashed into the analytical column. [Pg.890]

The situation is much more complicated for a vibrational wavepacket launched from a r" 0 initial eigenstate (see Fig. 9.7). However, a simple picture based on the classical Franck-Condon (stationary phase) principle (see Section 5.1.1) captures the essential details of the wavepacket produced at to on the electronically excited potential surface. First, there is the limiting case of an excitation pulse sufficiently short that an exact replica of the electronic ground state vibrational eigenstate, (R v" / 0), is created at to on the excited potential surface,... [Pg.663]

Chromatographic technique Mobile phase Stationary phase Principle... [Pg.3431]

In Chapter 3, the authors proposed the single-phase principle of the preparation of fused iron catalyst. It is clearly pointed out that high catalytic activity can be achieved when wiistite or magnetite phase exists separately in the catalyst. When wiistite and magnetite coexist in the catalyst, the catal3dic activity is always low. In the FeO phase region, the activity of the catalyst decreases due to the formation of a new phase a-Fe in the case of f > 11. [Pg.326]

VLE data are correlated by any one of thirteen equations representing the excess Gibbs energy in the liquid phase. These equations contain from two to five adjustable binary parameters these are estimated by a nonlinear regression method based on the maximum-likelihood principle (Anderson et al., 1978). [Pg.211]

The other method is to employ the principle of corresponding states and calculate the Cp/ of the mixture in the liquid phase starting from the mixture in the ideal gas state and applying an appropriate correction ... [Pg.121]

The example of a binary mixture is used to demonstrate the increased complexity of the phase diagram through the introduction of a second component in the system. Typical reservoir fluids contain hundreds of components, which makes the laboratory measurement or mathematical prediction of the phase behaviour more complex still. However, the principles established above will be useful in understanding the differences in phase behaviour for the main types of hydrocarbon identified. [Pg.101]

In this work, a microwave interferometric method and apparatus for vibration measurements is described. The principle of operation is based on measurement of the phase of reflected electromagnetic wave changing due to vibration. The most important features of the method are as follows simultaneous measurement of tlie magnitude and frequency of the rotating object high measurement accuracy weak influence of the roll diameter, shape and distance to the object under test. Besides, tlie reflecting surface can be either metallic or non-metallic. Some technical characteristics are given. [Pg.654]

Figure 2. Principle of 3 phase flow measurements by the continuous dilution tracer method. Figure 2. Principle of 3 phase flow measurements by the continuous dilution tracer method.
After having proved the principles a dynamic test facility has been constructed. In this facility it is possible to inject 3 tracers in a flownng liquid consisting of air, oil and water. By changing the relative amounts of the different components it is possible to explore the phase diagram and asses the limits for the measurement principle. Experiments have confirmed the accuracy in parameter estimation to be below 10%, which is considered quite satisfactorily for practical applications. The method will be tested on site at an offshore installation this summer. [Pg.1057]

The idea that unsymmetrical molecules will orient at an interface is now so well accepted that it hardly needs to be argued, but it is of interest to outline some of the history of the concept. Hardy [74] and Harkins [75] devoted a good deal of attention to the idea of force fields around molecules, more or less intense depending on the polarity and specific details of the structure. Orientation was treated in terms of a principle of least abrupt change in force fields, that is, that molecules should be oriented at an interface so as to provide the most gradual transition from one phase to the other. If we read interaction energy instead of force field, the principle could be reworded on the very reasonable basis that molecules will be oriented so that their mutual interaction energy will be a maximum. [Pg.64]

Using Langmuir s principle of independent surface action, make qualitative calculations and decide whether the polar or the nonpolar end of ethanol should be oriented toward the mercury phase at the ethanol-mercury interface. [Pg.93]

It was pointed out in Section XIII-4A that if the contact angle between a solid particle and two liquid phases is finite, a stable position for the particle is at the liquid-liquid interface. Coalescence is inhibited because it takes work to displace the particle from the interface. In addition, one can account for the type of emulsion that is formed, 0/W or W/O, simply in terms of the contact angle value. As illustrated in Fig. XIV-7, the bulk of the particle will lie in that liquid that most nearly wets it, and by what seems to be a correct application of the early oriented wedge" principle (see Ref. 48), this liquid should then constitute the outer phase. Furthermore, the action of surfactants should be predictable in terms of their effect on the contact angle. This was, indeed, found to be the case in a study by Schulman and Leja [49] on the stabilization of emulsions by barium sulfate. [Pg.510]

The course of a surface reaction can in principle be followed directly with the use of various surface spectroscopic techniques plus equipment allowing the rapid transfer of the surface from reaction to high-vacuum conditions see Campbell [232]. More often, however, the experimental observables are the changes with time of the concentrations of reactants and products in the gas phase. The rate law in terms of surface concentrations might be called the true rate law and the one analogous to that for a homogeneous system. What is observed, however, is an apparent rate law giving the dependence of the rate on the various gas pressures. The true and the apparent rate laws can be related if one assumes that adsorption equilibrium is rapid compared to the surface reaction. [Pg.724]

When two or more phases, e.g. gas, liquid or solid, are in equilibrium, the principles of internal equilibrium developed in section A2.1.5.2 apply. If transfers between two phases a and p can take place, the appropriate potentials must be equal, even though densities and other properties can be quite different. [Pg.352]

As the temperature of the liquid phase is increased, the system ultimately reaches a phase boundary, the bubble point at which the gas phase (vapour) begins to appear, with the composition shown at the left end of the horizontal two-phase tie-line . As the temperature rises more gas appears and the relative amounts of the two phases are detemiined by applying a lever-ami principle to the tie-line the ratio of the fractionof molecules in the gas phase to that hn the liquid phase is given by the inverse of the ratio of the distances from the phase boundary to the position of the overall mole fraction Xq of the system. [Pg.613]

While, in principle, a tricritical point is one where three phases simultaneously coalesce into one, that is not what would be observed in the laboratory if the temperature of a closed system is increased along a path that passes exactly tlirough a tricritical point. Although such a difficult experiment is yet to be perfomied, it is clear from theory (Kaufman and Griffiths 1982, Pegg et al 1990) and from experiments in the vicinity of tricritical points that below the tricritical temperature only two phases coexist and that the volume of one slirinks precipitously to zero at T. ... [Pg.659]

Radiation probes such as neutrons, x-rays and visible light are used to see the structure of physical systems tlirough elastic scattering experunents. Inelastic scattering experiments measure both the structural and dynamical correlations that exist in a physical system. For a system which is in thennodynamic equilibrium, the molecular dynamics create spatio-temporal correlations which are the manifestation of themial fluctuations around the equilibrium state. For a condensed phase system, dynamical correlations are intimately linked to its structure. For systems in equilibrium, linear response tiieory is an appropriate framework to use to inquire on the spatio-temporal correlations resulting from thennodynamic fluctuations. Appropriate response and correlation functions emerge naturally in this framework, and the role of theory is to understand these correlation fiinctions from first principles. This is the subject of section A3.3.2. [Pg.716]

Although in principle the microscopic Hamiltonian contains the infonnation necessary to describe the phase separation kinetics, in practice the large number of degrees of freedom in the system makes it necessary to construct a reduced description. Generally, a subset of slowly varying macrovariables, such as the hydrodynamic modes, is a usefiil starting point. The equation of motion of the macrovariables can, in principle, be derived from the microscopic... [Pg.735]

In the case of bunolecular gas-phase reactions, encounters are simply collisions between two molecules in the framework of the general collision theory of gas-phase reactions (section A3,4,5,2 ). For a random thennal distribution of positions and momenta in an ideal gas reaction, the probabilistic reasoning has an exact foundation. Flowever, as noted in the case of unimolecular reactions, in principle one must allow for deviations from this ideal behaviour and, thus, from the simple rate law, although in practice such deviations are rarely taken into account theoretically or established empirically. [Pg.769]


See other pages where Phase principle is mentioned: [Pg.391]    [Pg.94]    [Pg.533]    [Pg.734]    [Pg.927]    [Pg.13]    [Pg.114]    [Pg.182]    [Pg.247]    [Pg.3]    [Pg.9]    [Pg.181]    [Pg.391]    [Pg.94]    [Pg.533]    [Pg.734]    [Pg.927]    [Pg.13]    [Pg.114]    [Pg.182]    [Pg.247]    [Pg.3]    [Pg.9]    [Pg.181]    [Pg.4]    [Pg.44]    [Pg.236]    [Pg.547]    [Pg.730]    [Pg.736]    [Pg.91]    [Pg.251]    [Pg.610]    [Pg.611]    [Pg.658]    [Pg.741]    [Pg.852]    [Pg.884]    [Pg.893]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



© 2024 chempedia.info