Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase deduction

This confirms the deductions from a gas phase electron-diffraction study P-Fo 158 pm,... [Pg.499]

Electrospray is an unusual mass spectrometry technique in that it allows the study of the three-dimensional structure of compounds, particularly proteins, in solution as it is believed that this is relatively unchanged when ions are transferred to the vapour phase. This type of application will be discussed in more detail in Chapter 5 but attention is drawn at this point to the previous comments regarding the effect that the HPLC conditions, such as pH, may have on the appearance of an electrospray spectrum and the conformational deductions that may be made from them. [Pg.179]

Validity. The reasoning involved in this phase must be logically justifiable that is, the final conclusion should follow deductively from the facts of the example and from the theory of the domain. If we do not ensure this, we may be able to derive conditions on the two solutions that do not respect either the structure of the domain or the example. The use of these conditions could then invalidate the optimum-seeking behavior of the branch-and-bound algorithm. [Pg.300]

Early workers, and some later ones, ignored the fact that aluminium is always found in the orthophosphoric acid liquid of the practical cement its presence profoundly affects the course of the cement-forming reaction. It affects crystallinity and phase composition, and renders deductions based on phase diagrams inappropriate. Nevertheless we first describe the simple reaction between zinc oxide and pure orthophosphoric acid solution, which was the system studied by the earliest workers. [Pg.207]

A piperidene-based intermediate was found to crystallize as either an anhydrate or a hydrate, but the impurity profile of the crystallized solids differed substantially [26], Considerations of molecular packing led to the deduction that there was more void volume in the anhydrate crystal structure than in that of the hydrate form, thereby facilitating more clathration in the anhydrate than in the hydrate phase. This phenomenon was led to a decision to crystallize the hydrate form, since lower levels of the undesired impurity could be occluded and greater compound purity could be achieved in the crystallization step. [Pg.267]

When the saturation limit is exceeded and excess pure solid remains undissolved and in contact with the solvent, the number of phases present now equals two. However, there are still only two components in the system, leading to the deduction that the number of degrees of freedom is zero. In practical terms, this means that there can be no variation in concentration as more solute is added to the system, and segment B-C of Fig. 5 is obtained. When solubility diagrams are obtained that exactly match the type shown in Fig. 5, it can safely be assumed that the solute under analysis is at least 99.9% pure. [Pg.335]

Prior to 1970 our understanding of the bonding of diatomic molecules to surfaces, and in many cases the type of adsorption (i.e., molecular or dissociative) was almost entirely dependent on indirect experimental evidence. By this we mean that deductions were made on the basis of data obtained from monitoring the gas phase whether in the context of kinetic studies based on gas uptake or flash desorption, mass spectrometry, or isotopic exchange. The exception was the important information that had accrued from infrared studies of mainly adsorbed carbon monoxide, a molecule that lent itself very well to this approach owing to its comparatively large extinction coefficient. [Pg.65]

Application of pulsed ion gas-phase cyclotron resonance (ICR) spectroscopy to proton affinities of the derivatives 2-methoxypyridine and N- methylpyridin-2-one confirm previous deductions on the enthalpy of 2-hydroxypyridine-pyridin-2-one tautomerism (76JA6048), provided that the difference between the influences of O-methylation on 2-hydroxypyridine and A-me thy lat ion in pyridin-2-one are taken into account. These measurements have been further clarified and extended to other gas phase basicity measurements (79JA1361). A similar estimation of the gas phase basicities of 2- and 4-pyridinethiols and 2- and 4-pyridinethiones confirms that the thiol form is predominant in the gas phase (77TL1777), in line with previous studies involving mass spectrometric deuterium isotope studies (75BSB465). Photoelectron spectroscopy has also been employed in such studies (see Section 2.04.3.6 and Figure 21 for details) <77JCS(P2)1652>. [Pg.157]

Kinetics as a consequence of a reaction mechanism. The deduction of the kinetics from a proposed reaction mechanism generally consists in a reasonably straightforward transformation, where all the mechanistic details are eliminated until only the net gas-phase reaction and its rate remains. This approach may be used to investigate if a proposed mechanism consistent, what the reaction rate is and if it is consistent with available experimental data. [Pg.7]

Mg which is calculated as octahedral ions. It is nevertheless quite possible that the analyses of the fully expandable montmorillonites do show a valid chemical variation and not just analytical error of one sort or another. A remarkable point, in comparing the mixed layered and fully expandable bulk compositions is that the former defines two compositional series while the latter is found just between these two series. If indeed, this is the result of not only analytical errors, the relations would suggest that the fully expandable series are mixtures of the two extreme compositional types beidellite and montmorillonite. Since neither these nor the two forms are found alone, one would suspect the above deduction to be true. The possibility of the coexistence of two fully expanding phases has important implications in the phase relations as we will see. [Pg.84]

Chemical kinetics deductions are, in some circumstances, possible from a reaction system using a dispersed solid. If the solid is entirely insoluble, for example a supported catalyst, true surface kinetics can be obtained provided (i) it can be shown that the chemical reaction on the surface is much slower than the associated mass transfer, and (ii) the surface area of the solid can be obtained. These conditions applied in the case of the oxidation of an aqueous solution of hydrazine using a dispersion of insoluble barium chromate [16]. Another case is where it can be shown that an increase in the amount of the solid component does not increase the reaction rate. In this case, exemplified by the formation of benzyl acetate from benzyl bromide and solid sodium acetate in toluene solvent, it is likely that the reaction occurs in the solution phase and that the reaction is proceeding at the saturation concentration of the solid reactant in the liquid phase [17]. [Pg.115]

For a 25-cm column, deduct 10% from the hrst peak s %B and equilibrate the column with this dial-a-mix mobile phase (i.e., if the first peak came off at 80% B, dial-a-mix 70% B). For a 15-cm column, deduct 7% from the first peak %B to find your dial-a-mix isocratic. Equilibrate the column with this mobile phase. [Pg.230]

Further, he shows that addition of a group X to the molecule A should change the partition coefficient by a given factor which depends on the nature of the group and on the pair of phases employed but not on the rest of the molecule. This deduction was extended and formalized by Bate-Smith and Westall.21 Where the original molecule A is substituted by n groups x, m groups y, etc., it follows from equation (4) that... [Pg.308]

Check these deductions using the MOs from the Appendix. Note in particular that (a) the LUMO energy is the same in RCHO and (RC0)20, (b) the anhydride LUMO is an antisymmetrical combination of nco levels which has a coefficient of zero at the central oxygen and (c) the MO lying just above the LUMO is a symmetrical nco combination, mixed out-of-phase with the oxygen orbital. [Pg.80]

Thus, one can choose from the two possibilities to simplify the system (3.1). We are convinced, that the approximation of independent chains appears to be a very good initial approximation. The situation appears to be similar to a situation in dilute solutions discussed in the previous chapter. However, in contrast to the case of dilute solutions, the correlation times of the surrounding medium cannot be neglected for entangled systems. The initial phase of the theory might be found to be rather formal but the justification for every theory regarding physics eventually rests on the agreement between deductions made from it and experiments, and on the simplicity and consistency of the formalism. Comparison with experiment will be discussed in Chapters 5, 6, 9 and 10. [Pg.40]

The olivine spinel phase transition Experimental phase equilibrium studies have confirmed deductions from seismic velocity data that below 400 km, olivine and pyroxene, the major constituents of Upper Mantle rocks, are transformed to denser polymorphs with the garnet, y-phase (spinel) and P-phase (wadsleyite) structures (fig. 9.2). In transformations involving olivine to the P- or y-phases, transition pressures... [Pg.386]

Yet more important was the publication by Schottky and Wagner (1930) of their classical paper on the statistical thermodynamics of real crystals (41). This clarified the role of intrinsic lattice disorder as the equilibrium state of the stoichiometric crystal above 0° K. and led logically to the deduction that equilibrium between the crystal of an ordered mixed phase—i.e., a binary compound of ionic, covalent, or metallic type—and its components was statistical, not unique and determinate as is that of a molecular compound. As the consequence of a statistical thermodynamic theorem this proposition should be generally valid. The stoichiometrically ideal crystal has no special status, but the extent to which different substances may display a detectable variability of composition must depend on the energetics of each case—in particular, on the energetics of lattice disorder and of valence change. This point is taken up below, for it is fundamental to the problems that have to be considered. [Pg.7]


See other pages where Phase deduction is mentioned: [Pg.4]    [Pg.189]    [Pg.299]    [Pg.78]    [Pg.115]    [Pg.542]    [Pg.72]    [Pg.262]    [Pg.108]    [Pg.163]    [Pg.36]    [Pg.98]    [Pg.381]    [Pg.401]    [Pg.123]    [Pg.9]    [Pg.155]    [Pg.959]    [Pg.203]    [Pg.66]    [Pg.853]    [Pg.489]    [Pg.220]    [Pg.268]    [Pg.305]    [Pg.332]    [Pg.252]    [Pg.94]    [Pg.244]    [Pg.853]    [Pg.377]    [Pg.37]    [Pg.344]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Deductibles

Deduction

Deductive

© 2024 chempedia.info